
Rewriting the Sensor Network

Abstraction Stack

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof. dr. ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen
op dinsdag 15 januari 2008 om 10:00 uur

doorThomas Edward Victor PARKER

electrotechnisch ingenieur

geboren te Londen, Engeland

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. ir. H.J. Sips

Toegevoegd promotor: Dr. K.G. Langendoen

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. ir. H.J. Sips Technische Universiteit Delft, promotor
Dr. K.G. Langendoen Technische Universiteit Delft, toegevoegd

promotor
Prof. dr. H.L. Muller University of Bristol
Prof. dr. ir. I.G.M.M. Niemegeers Technische UniversiteitDelft
Prof. dr. ir. M. van Steen Vrije Universiteit Amsterdam
Dr. ir. P.J.M. Havinga Universiteit Twente
Dr. ir. M.G. Maris TNO

Copyright c© 2008 by Tom Parker

All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying, recording or by any information storage and retrieval system, without the
prior permission of the author.

ISBN: 978-90-9022662-0

AUTHOR EMAIL : TOM@TEVP.NET

”If a man can write a better book, preach a better sermon, or make a better
mousetrap than his neighbor, though he build his house in thewoods, the

world will make a beaten path to his door.”
- Ralph Waldo Emerson (1803-82)

Acknowledgements

This thesis could not have been created without help from many people:

• Koen Langendoen, my supervisor; for his confidence in my abilities that let me
come to the Netherlands initially; for more help than I care to count with both the
ideas herein and helping me through the insanities of Dutch bureaucracy; also for
providing a voice of reason helping me come back down to Earthafter I’d just
proposed my latest wacky idea.

• Niels Reijers and Aline Baggio, my office mates, for listening to my ideas, and
being interested while I explained why some very small item was vitally important.

• Gertjan Halkes, for all his help with debugging everything from sensor nodes to
simulators (as well as correcting some of my larger coding errors).

• My defence committee, for helping this become a better thesis.

• My parents, for being understanding and helpful when I said Iwas leaving Eng-
land, as well as throughout my PhD.

• And of course the cast of thousands who worked on the topics that helped me get to
this work today, some of whom have listened and given me useful feedback when
I explained what crazy things I was doing with their ideas.

Thanks everyone.

Tom Parker
Delft, December 2007

i

ii

Contents

1 Introduction 1
1.1 Origins . 1

1.1.1 Applications . 2
1.2 A Different Approach . 4

1.2.1 Changing Roles . 5
1.2.2 Power issues . 6
1.2.3 Locality considerations . 7
1.2.4 New Areas . 8

1.3 Problems . 8
1.3.1 Treading on the fingers of giants 8
1.3.2 Abstract software . 9
1.3.3 Improved choosing . 11
1.3.4 Sensor Networks . 13

1.4 Contributions of this thesis .. 13

2 MAC Protocols 17
2.1 MAC concepts . 18
2.2 Implementation Difficulties .. 20
2.3 Types of WSN MAC protocols . 20

2.3.1 TDMA . 21
2.3.2 CSMA . 21
2.3.3 Differences between the types 22

2.4 Problems . 22
2.5 A new MAC stack . 23

2.5.1 Underlying Modules . 23
2.5.2 Transmission Layer . 24
2.5.3 Time Management . 24

2.6 TheλMAC framework . 24
2.6.1 λ interfaces . 26
2.6.2 Network Time . 30

iii

CONTENTS CONTENTS

2.6.2.1 Fuzz values . 31
2.6.2.2 Maintaining synchronisation 33
2.6.2.3 Criticism . 34

2.7 Transmission layer modules . 34
2.7.1 Notes on Transmission module design 34
2.7.2 Broadcast . 35
2.7.3 Unicast . 36

2.8 Integrating existing MAC types .. 36
2.9 λT-MAC . 37

2.9.1 Scheduling . 38
2.9.2 Testbed data . 38

2.10 λLMAC . 39
2.10.1 Implementation . 40

2.11 Testing . 40
2.11.1 Code Size . 42
2.11.2 Power tests . 43

2.12 Further Transmission modules .. 44
2.12.1 ExOR . 44
2.12.2 Priority Queueing . 45

2.13 Related work . 46
2.14 Conclusions . 47

2.14.1 Future Work . 48

3 Routing 49
3.1 Sensor Network routing . 50

3.1.1 Basic . 51
3.1.2 Hierarchical . 51
3.1.3 Geographic . 52
3.1.4 Data-based . 52

3.2 Problems . 52
3.3 Partial Solutions . 54

3.3.1 ETX . 54
3.3.2 ExOR . 55

3.4 Generalised ExOR . 56
3.4.1 Choice Functions . 56

3.4.1.1 Multi-hop Reliable Broadcast 57
3.4.1.2 ExOR-ETX . 58

3.4.2 Inverted ExOR . 58
3.5 Guesswork . 59

3.5.1 Initialisation . 59
3.5.2 Message Transmission . 60
3.5.3 Adaption . 60
3.5.4 Failure Resilience . 61

3.6 Implementation . 61

iv

CONTENTS CONTENTS

3.6.1 Building ExOR . 61
3.6.2 Building Guesswork . 63

3.7 Results . 64
3.8 Conclusions . 66

3.8.1 Future Work . 67

4 Localisation 69
4.1 Existing localisation methods .. . 70
4.2 Problems . 71
4.3 Probability maps . 72

4.3.1 Model choice . 74
4.3.2 Working with models . 75

4.4 Refined Statistics . 75
4.4.1 Bounding boxes . 78
4.4.2 Thresholded broadcast . 79
4.4.3 Symmetry problem . 80
4.4.4 Heavy data-processing . 81

4.5 Mobile anchors . 82
4.5.1 Anchor distribution . 82
4.5.2 Mobile anchor scenarios . 83
4.5.3 Real-world applications . 83
4.5.4 Advantages . 84

4.6 Results . 85
4.7 Related Work . 86
4.8 Conclusions . 92

4.8.1 Future Work . 92

5 Motion 93
5.1 Detecting motion . 94
5.2 More Probability maps . 95
5.3 Adumbrate . 97

5.3.1 Mass-spring model . 98
5.3.1.1 Links . 99

5.3.2 Local co-ordinate systems . 99
5.3.2.1 Reference node placement 99
5.3.2.2 Initial placement . 100
5.3.2.3 Placing remaining nodes 100
5.3.2.4 Topology optimsation 101

5.3.3 Motion detection . 102
5.3.4 Results . 104

5.4 Moving localised nodes . 106
5.4.1 Bounding boxes . 107
5.4.2 Breaking the Boxes . 107

5.4.2.1 Portmanteau . 108

v

CONTENTS CONTENTS

5.4.3 Results . 109
5.5 Related Work . 110
5.6 Conclusions . 111

5.6.1 Future Work . 111

6 Aggregation 113
6.1 Existing work . 114
6.2 Problems . 115
6.3 Phase space representation .116

6.3.1 Region merging . 117
6.3.2 Constraints . 119
6.3.3 Dynamically limited sources merging119

6.4 Foxtrot . 121
6.4.1 Interfaces . 121
6.4.2 Source nodes . 122
6.4.3 Sink node . 123
6.4.4 Timing issues . 123

6.5 Results . 124
6.6 Sparse mapping . 129
6.7 Conclusions . 131

6.7.1 Future Work . 132
6.7.1.1 Routing Hints . 132
6.7.1.2 Bounded-inaccuracy Foxtrot 132

7 Conclusions 133
7.1 Usefulness of sensor networks .135
7.2 Further work . 136

7.2.1 Layers . 136
7.2.2 Fuzzy neighbours . 137
7.2.3 Topology randomisation . 137

vi

Chapter 1

Introduction

1.1 Origins

The origin of Wireless Sensor Networks (WSNs) can be traced back to the Smart Dust [58]
project, which speculated about the possibility of computing systems at a micro scale (1-
10mm3). Creating viable systems at this size brought up a lot of very difficult problems,
notably how to build power storage and communication systems that small, but the core
concept - lots (thousands to millions potentially) of smallcomputers scattered into the
environment - opened up a range of new applications, despitethe technical difficulties.

Figure 1.1: Smart Dust “Golem” prototype (6.6mm3 volume)

The idea is that many cheap computers are used to cover a larger region than could
realistically be covered by a smaller set of more expensive systems. Part of the intuition
behind this design choice is the limited range of most sensors. For example, a tem-
perature sensor gives you a single point value for a particular location. Buying a more
expensive temperature sensor may provide better values, but it is still limited to a very
coarse grained view of the surrounding environment. Therefore the primary way to im-
prove the overall sensing quality is to use more sensors, andto place them in various
different locations.

The data from multiple sensors then needs to be gathered in from scattered locations
over an often fairly large physical area, and for many scenarios, placing lots of wires
in the environment may well be impossible or interfere with the goal of gathering data

1

1.1. ORIGINS CHAPTER 1. INTRODUCTION

from the environment. Therefore, the notion of wireless communication, coupled with
a simple computer is an appealing approach for data gathering from the sensors. Also,
given that the quality of the data from the network is directly effected by how many of
these wireless sensors can be bought given the budget of the system, making them as
cheap as possible is a major design aim.

(a) Example network (b) TNOde (∼ 900mm3 volume)

Figure 1.2: Wireless Sensor Networks

Thus, the field of Wireless Sensor Networks works with small computers (called
“nodes”) that are used to gather and interpret data about their environment. The current
nodes worked with are much bigger than the Smart Dust ideas (compare for example the
node in Figure 1.1 at 6.6mm3 to the node in Figure 1.2b at∼ 900mm3) but the increased
size allows for easier-to-use systems, while still being sufficiently faithful to the original
concepts to allow for research into the problems that need tobe dealt with by both sizes
of node. Additionally, a greater number of applications become viable with larger nodes,
especially as it now becomes possible to use off-the-shelf components (processors, bat-
teries, radios) to build the nodes, rather than having to specially build every component,
which can reduce costs significantly.

1.1.1 Applications

Working with many cheap wireless sensors scattered in an environment allows for a wide
variety of new applications, and some examples of those thathave been attempted so far
are listed below:

• Precision agriculture

– Precision agriculture for sensor networks has mainly focused on the gathering
of micro-climate data for crop fields, in order to improve crop management
decisions [18]. The LOFARAgro project ([39, 70, 134], Figure 1.3) has
been attempting to reduce the required amount of pesticide used on a field by
providing much more detailed information about the climateof a field, with
the smallest resolved regions now being measured in meters v.s. kilometres
with earlier approaches.

2

CHAPTER 1. INTRODUCTION 1.1. ORIGINS

Figure 1.3: LOFARAgro project for precision agriculture

• Wildlife studies

– The most notable wildlife study with sensor networks has been the Great
Duck Island experiment [79, 131, 137], which gathered data on the Leach’s
Storm-petrel (a seabird that nests on Great Duck Island off the coast of Maine,
USA). The Leach’s Storm-petrel had previously been a difficult subject for
zoologists to study, due to both adverse climatic conditions on the island, and
its nocturnal lifestyle. With the aid of sensor networks, a detailed study of
the species has been made possible.

• Architectural monitoring

– Determining the stress levels in a building is a difficult task, and without that
data, checking whether a building is structurally sound (because of earth-
quakes, or other sources of damage) is hard to test. Additionally, if a building
becomes damaged over time e.g. dry rot, but it is not noticed by the inhab-
itants, then a building may become structurally unsound without warning.
Several projects [20, 61, 117] have tested the idea of using sensor networks
to record stress data for buildings over their entire lifetime, providing reliable
and up-to-date data on the structural integrity of buildings.

• Military surveillance

– A number of military applications have been proposed for sensor networks,
including target tracking [6] (e.g. using magnetometers todetect tanks), sniper
detection [123] (using sound measurements to track a bulletback to its source),
and compound security [27] (detecting intruders around a specified perime-
ter).

3

1.2. A DIFFERENT APPROACH CHAPTER 1. INTRODUCTION

• Monitoring cargo containers

– WSNs can be used for various applications in the area of cargo container
monitoring, both in the sense of determining where a cargo container is, and
in the protection of a container from intruders. The most famous example of
the latter is Sun Microsystems’ “Project Blackbox” [109], which uses their
SunSPOT nodes [1] to protect a cargo container full of more conventional
computing hardware.

• Medical data gathering

– Modern medicine relies heavily on data gathered from the patient to guide the
choices of medical personnel. e.g. heart rate, electroencephalogram (EEG)
readings, etc. Most of these readings are currently gathered by connecting
a patient by wires to a (large) semi-static machine, which limits patient mo-
bility, and the machines are often quite expensive. Sensor networks are be-
ing explored [88, 119] as a possible replacement, providingsimilar data in a
cheaper and more portable form.

• Industrial monitoring

– Monitoring industrial processes for changes in their performance can be used
as an early indicator of equipment failure. As industrial locations are often
unsuitable for additional cabling (due to space being at a premium), earlier
work has used a “sneakernet” method of data transfer from sensors embedded
in the sensors to analysis stations (i.e. physical transferof data storage). This
increases the time between failure being noticed by a sensor, and it being
passed on to the operators of the system, and can result in an increased failure
rate of equipment. Sensor networks have been shown to be a viable solution
for reducing the delay time without requiring cable installation [64].

In short, sensor networks are a new tool used for many different applications, providing
data over a longer period of time, larger locations, and withreduced costs v.s. other
techniques.

1.2 A Different Approach

In order to create viable systems from many cheap sensors, WSNs are a hybrid endeav-
our, taking elements from many existing fields and combiningthem in new and interest-
ing ways. The major predecessor fields are as follows:

• Distributed systems, with a focus on Ad-Hoc networking

• Embedded systems

• Wireless systems

4

CHAPTER 1. INTRODUCTION 1.2. A DIFFERENT APPROACH

These fields interact in complex ways when brought together.For example, most dis-
tributed systems research assumes both mostly reliable transport (which is removed by
the wireless systems) and per-node resource limits similarto a desktop PC (which is not
true in the embedded world, especially regarding power limits). This disruption of the
common assumptions of the predecessor fields requires new approaches to be created for
problems that would be otherwise considered solved.

In order so that it is possible to achieve usable results given the limits of the sys-
tems that the original goals specified, certain restrictions are made to the design space
for WSNs, relative to the capabilities considered typical for other conventional related
systems, and some new issues need to be considered.

1.2.1 Changing Roles

Instead of the arbitrary point-to-point networking of standard distributed systems, most
WSN work focuses on a “source-to-sink” model of networking. This model of network
communication incorporates knowledge about the typical design aims of a WSN, namely
gathering data. The nodes that have data (“sources”), will not have enough power to
transmit information very far, so external help is often required to transfer data to the end
users. This is achieved by the notion of a “sink” node - few (often one) more expensive
nodes with additional capabilities: bigger batteries, increased processing capability, and
often a second network connection to a larger network (e.g. awired connection to the
Internet). Limiting the number of expensive nodes keeps with the goal of cheap networks,
and as in general the major destination point for a packet from a source node is the sink
node, this reduces the size of routing tables for each node aswell as the amount of
communication necessary to maintain said routing tables.

Figure 1.4: Source-to-sink networking

5

1.2. A DIFFERENT APPROACH CHAPTER 1. INTRODUCTION

Regarding the data gathering role, applications for WSNs canbe split into two major
groups determined by the nature of their data gathering and many protocols are optimised
towards one or the other role. They areevent-drivenscenarios, where data is only trans-
mitted in the network when an “event” happens e.g. a person moves, or the temperature
changes; andperiodic data measurement, where data is generated at periodic intervals
e.g. measuring temperature every 10 minutes. There are hybrid scenarios - event-driven
situations often want a “heartbeat” message sent periodically (in order to maintain stable
end-to-end communication links between times when event data is available); and peri-
odic data measurement systems sometimes have a feedback mechanism to alter the rate
of measurement in the event of significant changes in the databeing measured - but most
systems will primarily be in one or the other group.

1.2.2 Power issues

Power limitations are a major consid-

Figure 1.5: Limited power sources

eration for sensor networks, as the power
resources (i.e. batteries) are generally sca-
rce, and so there is the need to find a power
efficient way to do things in order to have
a network that works for a long period of
time. The problem is that any attempt to
actually do anything (like sending or re-
ceiving messages) costs power and so the
most power efficient choice in every case
is to switch off the node entirely. Sensor
networks effectively need to do the mini-
mum effort necessary in order to achieve
the aims of a particular application, removing any redundant or extraneous effort wher-
ever possible.

One of the motivations behind power efficiency is the likely deployment of sensor
networks in remote areas. If a sensor is deployed in a remote area, then going to that
location and replacing the battery in every sensor (potentially hundreds to thousands)
will be an expensive and time-consuming operation. To give an example of the problems
that sensor networks face, we can note that the typical poweravailable to a sensor node
(600-3000 mAh at 3V with a pair of AA batteries) is comparableto a standard consumer
mobile phone battery (typically ˜650-1500 mAh at 3.6V). Maximum lifetime for a mo-
bile phone between recharges, even assuming that no phone calls are made, tend to not
exceed approximately 10 days (with many not exceeding 3-4 days), which is comparable
to the expected lifetimes for always-on sensor networks (estimates vary, but 4 days is typ-
ical [67]). In order to increase the inter-recharge lifetime to more viable levels (months
to years), good power management techniques are required.

Indeed, the focus on working with only limited power, especially given that currently
battery capacity per unit volume has not made any significantimprovements in recent
years [80], means that low power systems are and will continue to be a major research

6

CHAPTER 1. INTRODUCTION 1.2. A DIFFERENT APPROACH

aim in the sensor networks field. Although various efforts inthe field of nanomaterials
may well provide significant improvements in the coming years, which may cause new
battery technologies to provide an order of magnitude or more improvement in power
capacity, this is unlikely to increase the net available power. Given that for many current
nodes the battery is the major contributor to both their sizeand weight, this improvement
will probably be used mainly to reduce the size of nodes rather than to increase their
power storage capabilities. This results in the conclusionthat the total power available to
any given individual node will probably not change significantly in the near future.

1.2.3 Locality considerations

The physical environment in which

Figure 1.6: Radio-based neighbour nodes

systems are deployed is also a more im-
portant issue for WSNs than for most
other distributed systems. For most Inter-
net-backed distributed systems, the pre-
cise location of a particular node is rel-
atively unimportant. Coarse location data,
with granularity down to the level of
“which country” (even larger units are
often acceptable) may be useful, but given
the speed of most links in the modern
Internet, knowledge of which nodes are
the physical “neighbours” of each other
is often not required. Some distributed
systems protocols (e.g. Chord [129], Pas-
try [114]) have the notion of neighbour
nodes, and may select these based upon latency or bandwidth values, but correspondence
between these metric numbers and precise physical distanceis often non-existent.

For WSNs, physical locality is a much bigger issue. Most algorithms (in fact, all
of the areas that we will look at in later chapters) will need some level of knowledge
of which nodes can be considered “neighbours”, and that willbe based upon the ability
of nodes to receive messages via their radios (see Figure 1.6for an example of this),
which is directly connected to physical locations and the environment around the phys-
ical locations. The requirement for knowledge of neighbours, combined with the list of
the neighbours being determined by the local physical environment means that sensor
networks are sensitive to where they are located. This applies both in a simple manner,
in that radio reception rates will be effected by distances between nodes; and in a more
complex manner, that the density of nodes in a deployed network is important, both if it is
too small (not enough sensors in a given area to achieve application goals; reduced redun-
dancy against bad connections/dead nodes) and if it is too high (many nodes competing
for limited radio bandwidth). In fact, node density will directly effect both the capability
of a network to achieve the application goals and the lifetime of a network [14, 53, 152].

Effective scalability of sensor networks is also an issue, partially due to the local-

7

1.3. PROBLEMS CHAPTER 1. INTRODUCTION

ity issues. Firstly, in the sense of whether we can measure upto the original goals of
“thousands of nodes” when most current deployments do not exceed 100 nodes. Even
in simulations, most testing is done with less than 1000 nodes. Secondly, node den-
sity requirements will both limit the number of nodes of thatcan be deployed in a fixed
area, and the maximum area that a fixed number of nodes can realistically cover without
breaking down.

1.2.4 New Areas

In addition to the changes to old areas, a number of research areas that would not be
considered for as part of traditional networking research are incorporated into sensor net-
works. The major additions are Localisation (Chapter 4) andData Aggregation (Chap-
ter 6), which are both responses to the issues specific to sensor networks - lack of (ex-
pensive) specialised hardware and the aforementioned power restrictions.

Localisation deals with the problem of determining the physical location of a node,
and it is related to the locality issues mentioned above. Themain purpose of a WSN is
information gathering, and gathered data is only useful if you know what it applies to.
For example, the data “the temperature has gone up by 10 degrees” is not very useful, but
the information “the temperature has gone up by 10 degrees inroom 3C” is a lot more
interesting. Location information gives us a context, which allows us to actually use our
gathered data. In other systems, GPS would be an option, but given the relative costs of
GPS units (which are comparable on their own to the costs for asensor node), the power
requirements, and the difficulty of using GPS indoors [76], sensor networks need new
solutions to the problem of Localisation.

Data Aggregation seeks to take multiple packets from nodes and combine them into
a smaller set of packets before transmitting them further into the network. The intuition
behind this is that if less data needs to be transmitted, thenit will consume less power. Of
course, this requires discarding some of the data, so aggregation techniques need some
information about the nature of the data and what the application requirements are for
the use of the data, in order to avoid discarding the important data.

1.3 Problems

With multiple complex goals in mind, and needing to work within the restrictions of the
application scenarios, WSNs naturally have a wide variety ofproblems to deal with, a
number of which appear to be related and spread across the entire field. This would imply
that there is an underlying problem that needs to be looked at, and we set out to try and
discover what that is.

1.3.1 Treading on the fingers of giants

Having a substantial body of existing work to start from has its advantages and disadvan-
tages - on the plus side, WSNs get a number of existing protocols to work from; on the
down side, existing ad-hoc networking protocols were not designed taking into account

8

CHAPTER 1. INTRODUCTION 1.3. PROBLEMS

the design restrictions of WSNs. To combat the problem of protocols not being power
aware (i.e. the primary difference between WSNs and other distributed systems), most
work in the field of WSNs has focused on finding more power efficient solutions to the
existing problems. This is a good approach, but many of the standard problems being
focused on are not the actual problems.

For example, for routing, the standard problem is “what is the shortest-hop path from
source to destination?”. For wired networks, or for wireless networks without power
limits, this is a perfectly good question. However, it is onestep away from the actual
problem, which is “how do I get my packet to the destination node?”. If you have an
answer to the former question, then you have a solution to thelatter question, and so
people get confused between the two. For sensor networks, with their limits, this is an
expensive mistake. The first question can be answered in a WSN context, that answer
can be used to achieve the application aims (get data to a sink), and more and more
optimal solutions to this problem can be found that will improve the energy efficiency of
the system. But, stepping away from the first question, and instead dealing with the full
problem directly gives you a wider range of possibilities, and allows much more energy
efficient solutions i.e. finding the most energy-efficient path, as opposed to the one with
the smallest number of hops, as the two are often different given unreliable links between
nodes.

One of the reasons why it is easy to fall into the trap of answering the wrong prob-
lem is how the problems are viewed. Going back to the routing example, the idea of
a shortest-hop path is a simple way to view routing - this ideaof a particular path for
packets works well in people’s minds. Moving from that simplistic model with “perfect”
links to a more detailed model with unreliable connections is harder to visualise, and so
it is difficult for programmers to envision the complete set of actions trivially. To some
extent, this is another example of the original statement - being one step away from the
problem - as the problem here is not how can a set of nodes implement an algorithm,
but how can programmers sufficiently incorporate the algorithm into their world view in
order so that they can understand how to write the code in the first place.

In order to find how to solve the right problems, we need to lookin more detail
at why we pick the wrong problems, and then how we can tell the difference between
right and wrong problems. Some effort has already been done in the field of challenging
standard computer science metaphors, both in general [57] and in distributed systems
specifically [128], but more work is needed dealing with the relations of the issues to the
scenarios commonly encountered in sensor networks.

1.3.2 Abstract software

In the software realm, everything is an abstract construct,and often a construct based
upon an entire series of other lower layer constructs. Even the things we regard as a phys-
ical object (CPUs for example) are themselves abstract concepts. A CPU is an abstract
concept that we use to describe certain high-level effects generated by a series of smaller
physical objects (processing units, logic gates, transistors, electrons) grouped together in
such a way that they behave in ways that conform to certain models that are useful to us.

9

1.3. PROBLEMS CHAPTER 1. INTRODUCTION

A model is useful in the sense that it is an abstraction away from the complexities of the
full system e.g. what every single transistor in a CPU is doing v.s. what the CPU is doing.
The full system simply has too many details, and in order to facilitate reasoning about
the system, we think about things in a particular way (a “mental model”) in order to help
build a simplified model of the full system i.e. an abstractedview of the full system.

Reddy [107] and Lakoff [68] showed that the choice

Application

Routing

MAC

Radio

Figure 1.7: Part of the CPU ab-
stractions

of mental models is intrinsically tied to how peo-
ple think about the world, and looked at this for the
general case. Their work with conceptual metaphors
showed that people mentally model abstract concepts
based upon experiences of physical events, describ-
ing them as “experiential metaphors”, and we can
apply this line of reasoning to computing-related ab-
stractions as well.

Many of the physical events associated with men-
tal models of computing concepts involve one or more
people doing a task that we would like the computer
to do, e.g. the common abstractions of a “stack” of
objects being like a stack of cards; the notion of a
“queue” of tasks being like a queue of people; the entire fieldof “agent-based” comput-
ing. For simple examples like queues and stacks, the connection between the abstract
concept and the physical example is obvious and clear. Assumptions and extrapolations
based on knowledge of characteristics of the physical example have direct analogs in the
abstract concept e.g. we can add more people to a queue, remove people from the front
of a queue, and the same problems occur with multiple queues (some queues may empty
faster than others for example) in both the abstraction and the physical example.

When we start to move to more complex examples e.g. sending a packet from one
node to another as being like sending a letter in the post, a greater level of detail is lost
between the abstraction and the physical example being usedfor our mental model, and
this starts to cause problems when attempting to reason using this model. In the mail
example, a piece of mail is only held by one person at a time, and it is impossible to
receive multiple copies of the same piece of post (a sender can send multiple copies of
an identical message, but they are separate pieces of post),whereas it is possible for
multiple nodes in a computer network to hold copies of a packet, and in some situations
a node will receive multiple copies of the same packet. Similarly, all postal mail is
implicitly unicast, with no concept of “broadcast” mail, but we can broadcast data packets
to multiple receivers.

One way to remove the problems with inconsistencies in our mental models is to build
better models. Instead of treating data packets like postalmail, we can think of moving
data packets around a network as being like people exchanging a message by talking to
each other. Multiple people can know a message, thus resolving the duplication incon-
sistency, but now we have to assume that the messages are passed from person to person
correctly. In the computing system, this is achieved by the use of CRC calculations, but
this is infeasible for human-to-human communication. We created a new mental model,

10

CHAPTER 1. INTRODUCTION 1.3. PROBLEMS

but once again our model was flawed, as there were inconsistencies between the model
that we use to reason about the abstraction and the complex system we are attempting to
model, and this will lead to flawed thinking regarding any useof the abstraction.

Furthermore, the initial creation of a new abstraction willbe based on a mental model
of a system, and so flawed mental models will result in flawed abstractions. This occurs
when a programmer is working with a complicated system, and believes that a higher
level of abstraction will help remove unnecessary details from his/her view of the sys-
tem. The notion of which details of the system are “unnecessary” and which are most
important is part of the mental model of the programmer when he/she is building the new
abstraction, and so flaws in that model will be reflected in theabstraction.

Figure 1.8: Levels of Abstraction

Deriving techniques for building better mental models is a difficult task, and more a
matter of psychology and pedagogy than computer science, soour focus in this thesis is
on working with examining and rebuilding abstractions.

One problem that may limit what we can do to improve our abstractions is that
it has been observed in general that “All non-trivial abstractions, to some degree, are
leaky” [126] i.e. the supposed gain from abstraction - not having to know about the un-
derlying system supporting the abstraction - is significantly imperfect, and knowledge of
the underlying system is often required to be able to understand how to fully use the ab-
stracted concept. Also, every abstraction that is used has acost (often implicit rather than
explicit), in the sense that it is generally always possibleto build more efficient things by
working without that abstraction layer.

A possible conclusion from all the problems with abstractions is that the most effi-
cient results can be gained by designing every physical object from the quarks up, and
that software should not exist in favour of custom designed special-purpose hardware,
which has again been optimised to be perfect for the particular task in hand. Unfortu-
nately we cannot take this approach, as it is impractical fora number of reasons; the most
important being that for all non-trivial aims this would take vast amounts of time and ef-
fort, in part due to the effort of working with complete models rather than abstractions.
We therefore need to discover a level of abstraction that is suitable for the systems that
we want to develop.

1.3.3 Improved choosing

The conflict of tending to think about things based on abstract metaphorical mental mod-
els derived from arbitrary experiential data v.s. the reality of the systems that we are
dealing with being considerably different to these models (despite our attempts to build
an abstraction that resembles our thinking) results in variable (often high) costs.

11

1.3. PROBLEMS CHAPTER 1. INTRODUCTION

Therefore, we need to select a good middle ground, that balances between more ab-
straction, with a base set of primitives to work with that arecloser to how we think about
things (and therefore easier to work with), and the cost of that abstraction. All abstrac-
tions take items from the lower layers and build new objects that can be worked with, but
the decisions about how to do this grouping vary considerably. Not all abstractions are
equal either in terms of cost or in ease of use. The cost of an abstraction is mainly down
to two factors:

• Structural resemblance to lower layers - does the abstraction work with or against
the lower layer structures? Working against is more expensive, but may provide a
structure that is easier to work with.

• Size of groupings - does the abstraction group many lower level objects, or only
small subsets? If there is a lack of structural resemblance,then the groupings are
often larger, and may stop users of the abstraction who do notneed to use all of
the items in a group together from doing tasks efficiently. Smaller groups however
often provide a reduced gain in ease of use as the abstractionis similarly easy to
use as the underlying layer.

A good example can be given using programming languages. If asolution to a task is
created using Lisp (while working with conventional processors), then it will not be the
most efficient design possible due to the lack of structural resemblance between Lisp
and the underlying layers (C, assembler, processor instructions). A design in another
similarly high-level language (e.g. Python, Perl, Ruby) may well be able to be more
efficient. These other languages also differ considerably from the lower layers, but given
their closer structural resemblance, they have a lower abstraction cost.

However, the best choice is very much application-dependant. If the problem matches
well with the semantics of Lisp, then although a more efficient solution may be possible,
the Lisp solution may well be better than the solutions that could be achieved in the other
languages with a similar level of programmer effort. Conversely, for many applications
(or at least parts of applications), designing in a lower layer language (e.g. C) may well
be a better balance between efficiency and programmer effort.

The critical piece of knowledge is to be aware of the abstraction cost. With soft-
ware, this is often not very obvious, and easily forgotten. In other fields, the abstraction
is often obvious - for example, the use of foundations in architecture allows architects
some degree of abstraction away from the problem of whether they’re building for clay
and chalk soils that need minimal foundations; or peat and bog soils that require deeper
foundations, allowing them to focus on the issues of how to build the house on top of
the foundation. With software, abstractions have often been built by other programmers,
and so the costs appear as reduced speed or increased memory usage of the system, as
opposed to being costs of the abstraction layer, and separating the two is often non-trivial.

12

CHAPTER 1. INTRODUCTION 1.4. CONTRIBUTIONS OF THIS THESIS

1.3.4 Sensor Networks

Much of what has been stated here regarding the notion of abstraction is not a new prob-
lem for computer science, as many years of research into programming languages and the
extensive debates regarding the trade-offs between higherand lower-level languages will
attest. Abstraction has not however been suitably dealt with in sensor networks, as later
chapters of this thesis will show that the trade-offs intrinsic to the selection of a suitable
abstraction for a particular subsystem have not been properly analysed at all levels of the
sensor network stack.

For systems where plenty of power is available, e.g. the desktop PCs, servers and
human-portable devices focused on by the rest of distributed systems research, a trade-off
that emphasises ease-of-use and creates a high-level abstraction is acceptable because it
provides substantial reductions in programmer time and effort. These are the predecessor
fields to sensor networks and they are where we have inheritedour abstractions from,
without any significant amount of thought whether they are atall suitable for sensor
networks.

Sensor networks are not suited to choices that emphasise ease-of-use over efficiency.
The major factor distinguishing sensor networks from otherfields is the reduced resource
budgets (energy, processing, memory, etc), and so the logical conclusion is that the trade-
off between ease-of-use and efficiency needs to be revisited. This trade-off has been
correctly considered regarding the choice of programming languages - no one, to the
best of our knowledge, is trying to write programs in Python or Perl for sensor nodes,
and the majority of code is written in variants of C - as the ease-of-use/efficiency trade-
off in programming languages is familiar to most computer scientists, but there is far
more that can be gained by looking beyond simply choosing appropriate programming
languages.

1.4 Contributions of this thesis

In order to achieve the levels of efficiency necessary to get usable lifetimes with limited
energy resources, and to get good results out of WSNs, some of the less obvious ab-
stractions need to be challenged - those that are not even considered as abstractions - and
examine whether better abstractions can be built, or if the trade-offs are appropriate to try
dealing with the system at a higher or lower level. Re-examining the “abstraction stack”
will allow models of thinking about sensor network problemsthat are more efficient than
anything we could achieve with the current mental models.

In this thesis, we will examine various major groups of sensor network protocols,
show how earlier work has (mis)used abstraction, and demonstrate how an improved
model can be derived by re-thinking the level and nature of abstraction in the protocols.
In each case, we provide an example of an improved protocol design that uses the pro-
posed improved model, and show the gains over traditional models for the protocol type.
Many of the different protocol types for sensor networks have an implicit assumption of
a “building block” - something that is at the core of most protocols of that type, without

13

1.4. CONTRIBUTIONS OF THIS THESIS CHAPTER 1. INTRODUCTION

ever being thought about in much depth. Re-examining these building blocks is the main
focus of the work here.

The various different layers that we will examine interact with each other as shown
in Figure 1.9 to provide a complete software stack for WSN applications. Other possi-
bilities exist for interaction within sensor network stacks and different choices of layers
(e.g. cross-layer designs), but the majority of sensor network protocol design interact
as shown here. We evaluate our new views about each layer using a combination of
simulation models and/or experimental validation of the protocols that use the improved
abstractions (and comparisons to protocols that use the “standard” abstractions where
they exist).

Notably, although the predecessor fields to WSNs have sufficient resources to use
the inefficient models, the more efficient models proposed here will in some cases also
be suitable for use in fields outside of sensor networks, as even with abundant resources
improved efficiency is useful.

Figure 1.9: A typical WSN software stack

In each chapter of this thesis we take apart the assumptions of a different layer, with
the chapters laid out as follows:

• MAC protocols (Chapter 2) - we take apart the notion of a MAC protocol as a
low-layer, radio-dependent system, and build an improved modular framework for
constructing MAC protocols

• Routing (Chapter 3) - we deconstruct the idea of “unicast links” between nodes,
build a new set of sending primitives, and use them to build anenergy-efficient
routing protocol

• Localisation (Chapter 4) - we challenge the concept of distance estimation between
nodes, define “probability maps” for distance estimates, and build a localisation
protocol that can handle inaccurate ranging data using probability maps.

14

CHAPTER 1. INTRODUCTION 1.4. CONTRIBUTIONS OF THIS THESIS

• Motion (Chapter 5) - we further re-examine the abstractionsdeveloped in Chap-
ter 4 (probability maps and bounding boxes), look at differential probability maps,
and build new protocols that can do motion detection both with (Portmanteau) and
without anchor nodes (Adumbrate), but without requiring motion-detection hard-
ware.

• Aggregation (Chapter 6) - we challenge both the use of standard statistical func-
tions for aggregation, and the notion that aggregation can always combine all data
into a single packet. We then build a phase space representation for arbitrary
application-specific data, and build a new aggregation protocol that uses the phase
space representation to significantly reduce the errors v.s. traditional aggregation
protocols.

15

1.4. CONTRIBUTIONS OF THIS THESIS CHAPTER 1. INTRODUCTION

16

Chapter 2

MAC Protocols

In this chapter:We take apart the notion of a MAC protocol as a low-layer,
radio-dependent system, and build an improved modular framework for con-
structing MAC protocols

Most non-trivial networking systems, at the physical level, work with the idea of using
a medium that physically connects nodes of the system, and that is used to exchange
messages between them. WSNs are no exception, and in this casewe are mainly working
with radios, with the environment around the nodes being themedium. For radios, that
medium is shared, with many nodes potentially needing access to the same part of it at
the same time, so we need protocols to be able to decide when a particular node can
send messages and when it cannot. These are termed Medium Access Control (MAC)
protocols, and in this chapter we deal with the choices made in designing these protocols
for the WSN field.

Physically speaking, for radio-based systems, there is nothing stopping two nodes
from trying to use the medium at the same time, but depending on the exact locations and
orientations of the nodes, as well as the surrounding environment, the results of doing so
will vary significantly. Completion of the transmission of amessage is a relatively easy
task, and the only thing that will generally stop this from being done is other usage of the
radio by software on the node, which is information that software on the node is capable
of having complete knowledge of.

Correct reception of a packet by the intended destination node(s) is far less certain.
Knowledge of the state of the radios of other nodes, or the effects of those radios to the
environment surrounding a node, is necessarily imperfect,partly due to the quantity of
unknown and changing values (such as objects around the nodes that may absorb or re-
flect radio waves), and partly due to the problem that generally the only way to share
information about the radio of an individual node is via the radios. Additionally, future
packet rates are often unknown by the MAC protocols, as this information is a result of
the interaction between application and routing layers (and possibly localisation, aggre-
gation, and other protocols as well). Even in the degeneratecase with only an application
layer above the MAC, applications do not necessarily know inadvance exactly when they

17

2.1. MAC CONCEPTS CHAPTER 2. MAC PROTOCOLS

will need to send data (especially for event-based systems,see Section 1.2.1 on page 5),
and no current systems (either for simulation or real nodes)provide a mechanism for the
sharing of this information.

MAC protocols therefore need to attempt a trade-off betweensharing additional in-
formation between themselves and creating some level of synchronisation on who sends
when, v.s. the cost (energy, time) of this information sharing and the benefits that can be
gained given the above issues regarding imperfect information. Although transmission
is a simple matter, transmitting at the right time to make reception possible is a more
difficult matter given the number of influences external to the sending node that would
need to be considered, and that information about these willalways be partial. Addition-
ally, due to the lack of perfect information, no individual packet can be assumed to have
successfully been received. However, the use of retries, redundancy, acknowledgement
packets and of course careful use of the information that is known, can improve the odds
significantly.

2.1 MAC concepts

Before we look at the existing work in the field of MAC protocols, we need to look in
more detail at how the problems that we have already stated have been considered in
WSN MAC protocol design. As we stated in Chapter 1, our thinking about software is
as abstractions from the real problems, in order so that we can try and piece together
a mental model that approximates the problem without overloading us with too much
information.

Some of the common abstractions used within existing MAC protocol design are:

• Collisions - two nodes both sending at the same time is abstracted to the concept
of two physical objects colliding with each other (which is related to the “packet
as physical object” abstraction which we will look at in moredetail in Chapter 3).
The two sending nodes do not strictly speaking “collide”, but the effect of two sig-
nals both reaching the same point in space has an end result that is different from
either initial signal.

We then also have two special cases of collisions which are often dealt with as
separate problems

– Interference is when a (weaker) second signal is able to reach the same point
in space as another signal, but the second signal would be insufficiently
strong to be received even if the first signal was not present.The separation
here between the notions of collision and interference underlines the faulty
abstraction mapping between the reality of multiple signals being transmitted
v.s. our attempts to create mental models.

– The Hidden-terminal problem [136] (as shown in Figure 2.1) occurs when
two nodes (A and B) want to send to a third node (C), and neitherA nor B can

18

CHAPTER 2. MAC PROTOCOLS 2.1. MAC CONCEPTS

hear each other’s messages. As neither A nor B can hear each other’s mes-
sages, they are each unaware that the other is sending, and sothey will col-
lide. This is opposed to situations where two potential transmitters can hear
each other’s signals, and so the second (chronologically speaking) sender
will hear the message of the first and not transmit its messages. The hidden-
terminal problems usually refers to situations where both messages would
have been sufficiently “strong” to be received by the intended destination
node (C), but the “collision” stops this from happening.

Figure 2.1: Hidden-terminal problem

• Idle listening is any time when a node is listening to the radio, but no messages
are currently being received. This is to a certain extent, a WSN-specific MAC
problem, as idle listening does not interfere with other radio traffic, but it does
consume power, which is a much bigger problem for WSNs (with their power
limits) than for other systems.
This can be inferred from the power consumption for a typicalWSN radio [21],
which for reception at 868MHz typicallly consumes 9.6 mA v.s. 0.2 µA when
asleep. In other words, the radio consumes48000times more power when listening
than when asleep, and in the low-traffic scenarios typical toWSNs idle listening
actually consumes much more power than transmitting packets, so WSN MAC
protocols tend to optimise towards reducing idle listening.

Of these abstractions, the notion of collisions is most interesting, because of the reasoning
behind why it has been constructed, and why it was regarded asnecessary (if only as
a default assumption given what we discussed in Chapter 1 regarding the choices that
guide our abstract thinking). In effect, collisions and itsrelated abstractions (interference,
hidden-terminal) are an attempt to move away from the purelyanalog nature of radio, and
towards a digital expression of the concepts.

Although the analog radio signal is converted to/from a digital signal inside the ra-
dio transceiver hardware, the signal itself remains fundamentally analog, and the result
of multiple signals colliding is also an analog result. Specifically, a mixed signal from
multiple sources is also capable of demonstrating the patterns that the digital signal con-
version is looking for, such as in the BitMAC protocol [111],which uses the notion of
multiple bit-synchronised On-Off Keying [144] signals with an emphasis on an analysis
of the similarity of their likely combined form given the analog nature of radio signals
to the original individual signals. Alternately, Black Bursts [124] uses secondary char-
acterisitics of the messages (the length of messages) rather than the data within them
to also be able to work with collisions, by noting that multiple colliding messages will
create a garbled sequence of data of length equal to the time between the beginning of

19

2.2. IMPLEMENTATION DIFFICULTIES CHAPTER 2. MAC PROTOCOLS

the first message and the end of the second. Both of these directions for protocol design
require stepping back from the standard abstractions and re-examining the nature of the
problems that we face.

2.2 Implementation Difficulties

Instead of attempting to find a new way to rebuild the buildingblock abstractions for
MAC protocols (e.g. finding a new way to view the hidden-terminal problem by analysis
of the underlying radio signal issues), we decided to re-examine the components used in
the design of more conventional MAC protocols, as our earlier experiences have shown
that getting even a fairly conventional MAC protocol to workcorrectly on node hardware
was much harder than we expected. Discussions with other MACdesigners indicated
that this was not a problem with our choice of MAC protocol, but a result of the cre-
ation process for a MAC protocol at this time requiring direct interaction with low-level
components of the system.

Interacting with hardware components such as radios and dealing with their interac-
tions with millisecond resolution clocks on typical WSN nodehardware is difficult, and
this level of difficulty is something that a good abstractionprocess should have reduced
significantly. This indicates that there are concepts within the MAC protocol design pro-
cess that are not properly abstracted i.e. we need to build new abstractions to encompass
areas of the design space that should have been thought aboutin a more abstract way; or
possibly there are existing “buried” abstractions that we have not yet been able to iden-
tify correctly, and can probably be used more efficiently once we are fully aware of their
presence within our existing processes.

As there appeared to be room to reduce the effort required forbuilding MAC proto-
cols by re-examining the level of abstraction used, we decided that further exploration
into how MAC protocols are built was required.

2.3 Types of WSN MAC protocols

In order to properly rebuild the implementation process fora MAC protocol, we needed
to look what the range of possibilities was. Given all of the problems for MAC protocols,
both the more abstract forms, and the core issues underlyingthem, a lot of thought has
gone into their designs, and many different approaches havebeen considered.

Current WSN MAC protocols are usually grouped in two different broad categories
[71]: Time-Division Multiple Access (TDMA) protocols (TRAMA [104], PEDAMACS [23],
LMAC [50]) and Carrier-Sense Multiple Access (CSMA) protocols (B-MAC [99], Wise-
MAC [33], Sift [55], as well as hybrids usually described as CSMA such as S-MAC [148]
and T-MAC [24]).

20

CHAPTER 2. MAC PROTOCOLS 2.3. TYPES OF WSN MAC PROTOCOLS

2.3.1 TDMA

TDMA protocols work by dividing the available time into “slots” and “frames”. A slot is
a (small) period of time, in which only a subset of all the nodes (usually one in each local
“neighbourhood”) are allowed to send messages, and a frame is a longer period of time
made up of a series of slots. Most TDMA protocols attempt to create an environment
where only one node in any particular area can send at any one time, which should
eliminate the hidden terminal problem.

LMAC [50], for example, does this by allocating slot numberswhere a node is al-
lowed to send messages (defined as the position a slot occupies within a frame) such that
they are not re-used within a two-hop neighbourhood, so neither a node’s neighbours nor
the neighbours of its neighbours will have the same slot number (in order to get around
the hidden terminal problem [136]), and therefore any messages sent by a particular node
should never collide with messages sent by other nodes.

Some TDMA protocols (e.g. Crankshaft [42]) allocate when nodes are allowed to
send to a particular node as opposed to which node is currently allowed to send, but the
core principle remains the same. The difference is that rather than allocating slots for
when nodes are senders, and allowing all other nodes to be receivers; instead slots are
allocated for when nodes are receivers, and all other nodes can be senders to the receiver
node.

2.3.2 CSMA

CSMA protocols allow for sending at arbitrary points in time, but before a node may
send it needs to perform a “carrier sense” operation by listening to the medium for a
(usually) short period of time to check whether any other node is currently using the
medium before starting to send. The IEEE 802.11 MAC [52] is the most prominent
example of this technique, but it was not designed with low power usage in mind, and so
is not suitable for most sensor network nodes.

Another popular technique in this area is Low-Power Listening [32], which attempts
to reduce idle listening by coupling a long preamble with frequent short carrier sense
periods that are able to detect the preamble bytes. Preamblebytes are normally used in
MAC protocols at the beginning of a message to “train” the receiver (by synchronising
the carrier waves, see [105] for more details) to more accurately receive a packet, and are
generally only a few bytes long. In LPL, the preamble is much longer (>1000 bytes in
some cases). The idea is that a preamble ofn bytes long can always be detected by the
short carrier sense periods, provided said periods are no more thatn bytes apart.

LPL is more expensive for the sender node, but less expensivefor receiver nodes as
they do not need to continually sample the radio medium, and as in general there are more
receivers than senders, it is designed to reduce total energy consumption in the network
by reducing idle listening. This was later expanded into theWiseMAC [33] protocol,
which uses past knowledge of the receiver state to decide when it is a good time to start
a preamble sequence, allowing for much shorter preambles than LPL.

21

2.4. PROBLEMS CHAPTER 2. MAC PROTOCOLS

There are also hybrid protocols which use elements of both CSMA and TDMA. For
example, S-MAC [148] and T-MAC [24] make nodes wake and sleepfor periods of time,
with the exact intervals determined by one or more shared schedules, similarly to the
shared time notions from TDMA protocols. During awake periods, carrier sense methods
(as for CSMA protocols) are then used to determine when a nodecan send.

2.3.3 Differences between the types

TDMA and CSMA approaches are usually regarded as being very different, and even
within each approach we see many different protocols that all do things in significantly
different ways. Despite all the apparent differences, all of these protocols have one thing
in common - they are designed to manage the available time in the radio medium in a way
that attempts to optimise for particular useful metrics while sending/receiving messages.
The notion of which metric (latency, energy usage, etc) is most useful is application-
dependant, and often several metrics will be optimised for at the same time, with some
being regarded as more critical than others.

They all do this by managing when a particular node can send messages - TDMA
protocols do this by separating the available time into slots and allowing nodes only to
send in their slot; CSMA protocols do this by making nodes perform carrier sense before
sending (and in the case of protocols like S-MAC, also by waiting until the beginning of
the next “frame”). In total, a MAC protocol must do two things: given an application
wishing to send a packet, determine what time this node will be able to send and send
the packet at that point; and transmit appropriate control packets so that the application
layer will be able to send packets in the future.

2.4 Problems

We are now better able to explain why building MAC protocols was harder than would
have previously been expected. Current MAC protocol designfor WSNs covers a wide
variety of different tasks, in addition to the core item of managing when to send messages.
A MAC protocol is regarded as being responsible not only for deciding when to send
packets, but also what to send. For example, generating the standard Unicast sequence
of RTS/CTS/DATA/ACK messages is usually the responsibility of the MAC protocol
after the application has provided a data packet to be sent. The MAC must maintain
an internal state machine monitoring which one of these packets it last sent or received,
enabling it to determine what packet should be sent/received next. This state machine is
not particularly complicated, but when intertwined with the timing mechanisms required
by the MAC, the complexity of the combined code is often much greater than simple
addition of the complexity of the two separate code paths might suggest. Additionally,
as much of this is common to all MAC protocols, there is duplication of functionality,
which leads to MAC protocols code size being larger than necessary (which is related
to the code complexity increase [15]) and therefore increasing the probability of higher
numbers of bugs.

22

CHAPTER 2. MAC PROTOCOLS 2.5. A NEW MAC STACK

Another problem is that the decision about whether a MAC’s implementation of Uni-
cast uses RTS/CTS messages (which are seen by some designersas overhead, and by
others as required for reliability) tends to be a somewhat haphazard affair. Often, whether
their additional reliability is required should be a decision made above the MAC protocol
level - better choices include at application or routing level - and so some MAC protocols
that implement RTS/CTS allow this functionality to be switched off and on at run time.
The possibility of this option existing is an example of a feature that may or may not be in
a given MAC protocol depending on the whims of its designer. Additionally, extensions
to these basic functionalities must be separately implemented in each MAC protocol.

Given that we have a set of functionality that should be common to all MAC proto-
cols, but certain implementations do or do not have particular features implemented, we
lose out on a major advantage of common functionality: the idea that we can ideally use
any given MAC protocol as a drop-in replacement for any other. If we could in fact easily
swap MAC protocols, then application designers would be much more free to choose the
protocol that is most optimised for their needs, as opposed to the default MAC built into
the system. Additionally, because the duplication of effort results in both increased bug
count due to multiple implementations of the same ideas (e.g. Unicast), and a system that
is hard to extend, we conclude that our initial idea that MAC protocols needed redesign-
ing was correct; in that the current standard design brief for MAC protocols has a number
of significant problems, and therefore it should be rethought.

2.5 A new MAC stack

Given these problems, we wish to redesign the process for creating a MAC protocol such
that the common functionality that does not necessarily need to be in a MAC protocol
itself can be separated out. The first step to achieving this is to determine what is common
functionality, and what are MAC-specific requirements.

We looked at separating the existing large MAC protocols into 3 parts: below the
MAC, above the MAC and a “λMAC layer”, which would compromise the core “true”
role that should be the part of the code that reflects the choices of the MAC designer.
This set of layers we refer to collectively as the MAC stack, and together they should do
everything a traditional monolithic MAC layer would do on its own.

2.5.1 Underlying Modules

Several modules are required “below” theλMAC layer. Working from the conclusions
of Section 3.2, we know that MAC protocols need to send/receive packets, and to de-
cide when to send/receive. The first can be achieved with a “dumb” packet layer (no
queueing, minimal latency, switches radio on/off only whentold to); the second requires
medium activity detection (as part of the “dumb” packet layer) and/or a time synchroni-
sation layer. Time synchronisation can also then be used to generate “frames” (periodic
timers, as used by all TDMA protocols and S/T-MAC), but it needs to be designed such
that it will not interfere with protocols that do not requiretime synchronisation (e.g. B-
MAC [99]).

23

2.6. THEλMAC FRAMEWORK CHAPTER 2. MAC PROTOCOLS

2.5.2 Transmission Layer

The biggest question regarding how much we can pull out of a standard MAC layer was
deciding what aλMAC layer actually really needs to do. Or in other words, knowing
what a complete MAC stack needs to do, what makes one MAC protocol different from
another? Our conclusion was time management. One of the standard opinions about the
role of WSN MACs is power management, and time management can be considered an
extension of this - one of the time management roles is deciding when to switch the radio
on/off, but another is deciding when to start sending a packet sequence. However, once a
node has started a packet sequence (e.g. all of Unicast afterthe RTS message), the code
becomes remarkably generic and MAC-portable, yet is currently still embedded within
the MAC. What if we could extract that - let the MAC decide when to initiate packet
sequences, but then hand off to a generic module to perform the actual sequence itself?
This newtransmissionlayer module could then be reused in other MAC protocols.

2.5.3 Time Management

Now that basic packet sending/receiving, time synchronisation, and the sending of partic-
ular packet sequences have all been separated out, theλMAC layer only needs to contain
time management: that is, the maintenance of the knowledge about what time is a good
time to send packets; allocating blocks of time as required by the transmissionlayer
modules in order to allow them to both send and receive data; and switching the radio
on/off as appropriate for the individual protocol.

A block of time is simply an interval during which the radio isexclusively handed
over to a particular transmission module which has previously requested that theλMAC
layer give itn milliseconds in order to send a packet sequence; converselytime blocks
are also allocated when a packet comes in informing the localnode that another node
will be performing a packet sequence for a short period from now and so the local node
should not give the radio over to other transmission layer requests for time. Note that
when we talk about the good time to send a packet, we imply thatthis is a time with
a high probability that the destination node will be able to receive the packet, which is
information that theλMAC layer needs to keep track of as part of its time management
role.

2.6 TheλMAC framework

Given our new formulation of how a MAC protocol stack could bebuilt, we can now
define the required modules and connections for our new MAC stack (see Figure 2.2 for a
pictorial overview of how these interact), which we refer toas the theλMAC framework.

• Packet layer - responsible for the actual sending/receiving of a packet, radio state
changes (Rx/Tx/sleep) and for providing carrier sense functions (for CSMA-based
λMAC protocols). The sending/receiving radio state here is “dumb” - it does
things right now, with no options for delay or smart decisions considered. In the

24

CHAPTER 2. MAC PROTOCOLS 2.6. THEλMAC FRAMEWORK

Figure 2.2:λMAC protocol stack

case of byte-based radios, we also provide a platform-specific byte-interface layer
(which can only be talked to via the Packet layer), and for packet-based radios the
Packet layer is a slim layer on top of the existing hardware capabilities. This allows
us to abstract away from the differences of these two paradigms, as only packet-
level information is required for the higher levels of theλMAC implementation.

• Network Time layer - responsible for determining and storing the local estimate of
the current network time value in order to provide cross-network event synchro-
nisation. This is not required by allλMAC layers, but given that network time
information is useful to a large quantity of WSN MAC layers (due to the energy
savings that can be made if nodes are able to agree when transmit/receive peri-
ods should be), that the information is potentially useful to other layers, and doing
accurate timing information above the MAC layer is very difficult (given the un-
certainty in send times of at least the 10-msec range createdby most WSN MAC
protocols, which may increase to 100s of msec for TDMA protocols), we imple-
mented the Network Time layer here as a general service to theentire application
stack.

Responsibility for when to send packets is still the province of theλMAC layer,
but the Network Time layer will add its own information on sending. The Network
Time layer will also override theλMAC layer’s decisions on when to stay awake
on a periodic basis in order to do neighbour discovery. The overrides will make the
radio be in receive mode more than it would be normally off, but will not switch
the radio off when the MAC wishes it to be on, or switch the radio from transmit

25

2.6. THEλMAC FRAMEWORK CHAPTER 2. MAC PROTOCOLS

to receive mode (or vice versa). The Network Time layer here provides the same
interfaces as the Packet layer in addition to the Network Time interface in order
to allow altering of packets (for the purposes of timing information) on their way
to/from the Packet layer itself. For more information, see Section 2.6.2.

• λMAC - responsible for time management. Allocates time blocks in response to
requests from the Transmission layer, at times that are considered to be “good”.
Talks to the Network Time layer in order to send its own control packets (if re-
quired), as well as for carrier sense checking in order to determine if the radio
medium is free for sending (for CSMA-basedλMAC layers), and decides when to
switch the radio on and off. Passes packet send requests/receive events from/to the
Transmission layer to/from the Network Time layer, possibly altering said packets
along the way. Given the roles now allocated to other layers,theλMAC layer will
be considerably smaller than a traditional MAC layer.

• Multiplexer - (de-)multiplexer to allow for theλMAC to only provide a single
interface yet talk to many Transmission layer modules. Thisremoves yet more
common complexity from theλMAC, in accordance with our design goals.

• Transmission layer - contains the Unicast, Broadcast and other application-level
primitives of this nature. Requests time blocks from theλMAC layer as required,
and then sends packets during the allocated time. The transmission layer is fully
explored in Section 2.7.

There is one limitation on the choice of MAC protocol for theλMAC layer - that it
must be possible to allocate contiguous blocks of time that can be used for both sending
and receiving by a node. This is possible for all contention-based MACs, and for some
TDMA-based MACs, but this may require some alterations to the protocols.

2.6.1 λ interfaces

As we wish to define common connections between theλMAC and Transmission lay-
ers to enable reuse of the Transmission modules, we need to define some standard in-
terfaces for these connections. We use here the terminologyof nesC [37] to provide
common semantics, and also because our reference implementation is implemented on
top of TinyOS [49] (which is itself implemented in nesC). There should however be no
obstructions to implementing this with any other WSN software platform.

We define two separate interfaces, AllocateTime (Table 2.1)and MessageNow (Ta-
ble 2.3). AllocateTime defines the necessary functionalityfor a Transmission module to
allocate time from theλMAC layer, and MessageNow allows the sending and receiving
of messages during the allocated time. In general, a Transmission level module requires
a single instance of the AllocateTime interface, plus one instance of the MessageNow in-
terface per message type (e.g. the Broadcast module requires a single MessageNow, and a
standard Unicast requires 4 MessageNow interfaces (RTS, CTS, DATA and ACK)). The
λMAC layer, however, only needs to provide a single instance of each of AllocateTime

26

CHAPTER 2. MAC PROTOCOLS 2.6. THEλMAC FRAMEWORK

Name Type Args Return Function

requestBlock command uint16 t
msec

result t Request an AllocateTime period ofmsecmil-
liseconds. A return value of FAIL indicates a
persistent failure i.e. the requested period is too
long.

requestSafeBlock command uint16 t
msec

result t Same as requestBlock, but should only be
called after a previous AllocateTime period has
run to completion, but has completely failed
e.g. no response has been received from any
other nodes at all.

startBlock event void Called on the successful start of an Allocate-
Time period. Always corresponds to the last
call to requestBlock.

sleepRemaining command void Switch the radio off for the remaining length of
the AllocateTime period. This is intended for
periods when there will be packets in the air,
but none of them are destined for this node.

sendTime command uint16 t
length

uint16 t Query how long a packet oflengthbytes should
take to be transmitted with the relevant headers

endBlock event void Called at the end of an AllocateTime period
notifyEndBlock command void Notify module on end of period. endBlock

events happen by default for locally initiated
periods (periods starting with a startBlock()),
but are switched off by default for non-locally
initiated periods. notifyEndBlock() switches
on endBlock events for the currently active Al-
locateTime period.

Table 2.1: AllocateTime interface

Name Type Args Return Function

phyRequired event void Indicates that a packet (any packet)
should be sent as soon as possible by the
λMAC layer in order to maintain time
synchronisation. See Section 2.6.2.2.

Table 2.2: PhyRequired interface

27

2.6. THEλMAC FRAMEWORK CHAPTER 2. MAC PROTOCOLS

Name Type Args Return Function

send command TOS MsgPtr
msg, uint8t

length

result t Sends a packet right now. Fails if we are
already sending something. Should only be
called during an AllocateTime period.

sendDone event TOS MsgPtr
msg

void Called on completion of a send()

setAddressFiltering command bool enable void Enables/Disables automatic destination address
filtering for this interface i.e. dropping all in-
coming packets not destined either for this node
or for the broadcast address. Default is not to
filter. If filtering is switched on, packets not
destined for this node will cause sleepRemain-
ing() to be called in order to avoid overhearing
the packet sequence.

receive event TOS MsgPtr
msg,

uint16 t
fromAddr

bool Called when a message comes in that is not fil-
tered (see setAddressFiltering). Implementa-
tions should return TRUE if they wish to stay
awake for the rest of the AllocateTime period,
and FALSE otherwise.

reservedBytes command uint8 t Number of bytes reserved at the beginning of
the data section of the TOSMsg by lower lay-
ers

setPreambleLength command uint8 t
length

void Set length of packet preamble tolengthbytes.
Defaults to 1 if not called.

Table 2.3: MessageNow interface

28

CHAPTER 2. MAC PROTOCOLS 2.6. THEλMAC FRAMEWORK

Name Type Args Return Function

setFrameTime command uint32 t
msec, fuzzt

fuzz

void Set time between frame timers (msec
milliseconds) as well as allowable fuzz
time (LOW/HIGH FUZZ)

frameIndex command uint32 t Determine location within the current
frame i.e. milliseconds since last frame
timer.

networkTime async
com-
mand

networktimet
*temp

void Get a copy of the current local value of
the Network Timer. May or may not be
currently synchronised with other nodes.

frame async
event

void Frame Timer event. Fired only when this
node is synchronised to the other nodes in
the network (or has waited long enough to
confirm that there are probably no other
synchronised nodes in the local
neighbourhood).

frameGuaranteed async
event

void Fired when all nodes should now have
received frame events (due to limits on
their desynchronisation set by thefuzz
value).

frameSkipped async
event

void Indicates that one or more frame() events
have been skipped due to Network Timer
alterations.

Table 2.4: TimeSync interface

29

2.6. THEλMAC FRAMEWORK CHAPTER 2. MAC PROTOCOLS

and MessageNow to the Multiplexer module. The Multiplexer module provides generic
multiplexing services to create a parametrised interface to both AllocateTime and Mes-
sageNow, thus enabling the capability for multiple Transmission layer modules to be
enabled in a single application, without having to deal withthe multiplexing complexity
in eachλMAC layer.

Individual Transmission layer modules could be implemented using a single Mes-
sageNow interface per module. However for modules that require multiple message
types (e.g. Unicast), the implementers of the Transmissionmodules would have to both
add their own type field to the sent messages, and do de-multiplexing of the different
types at the receiver side. As the Multiplexer module allowsfor multiple instances of
MessageNow already (in order to allow multiple Transmission modules in a single ap-
plication), the Transmission layer protocol design can be simplified by using multiple
MessageNow interfaces, and this also removes the necessityfor the overhead of an addi-
tional type field.

The interface between the packet layer and theλMAC layer is much simpler, and as
this is more in keeping with traditional WSN MAC design, we will not cover it in detail
here. The Packet layer must provide interfaces to change theradio state (Tx/Rx/sleep),
and also to send/receive packets - similar to the send/sendDone/receive commands and
events of MessageNow. For a CSMA-basedλMAC layer, the Packet layer will also
require an interface to carrier sense operations. As we stated before, the Packet layer is
“dumb” - all of the smart decisions regarding when to send, tolisten and to sleep are
decided by the particularλMAC layer in use.

2.6.2 Network Time

In order for many MAC protocols to operate correctly, they require a mechanism to
synchronise nodes so that differing nodes can agree on events happening at the same
time e.g. synchronised awake times. Additionally, placingthis within the packet layer
also allows integrating time synchronisation informationinto each outgoing packet, thus
reducing the need for additional control packets whenever data packets are being sent.
However, as we wish the Network Time layer to not overrideλMAC-layer decisions
about when to send packets, in the case where a node does not have a sufficient rate of
outgoing packets to guarantee time synchronisation, the Network Time layer will send a
phyRequired event (Table 2.2) to theλMAC layer requesting that it send a packet “soon”
in order to maintain time synchronisation.

In keeping with the idea of the Network Time layer as a genericlayer, and also
because we wish to provide information to modules other thantheλMAC layer, we need
to define the timing information appropriately. We started with the work of Li et al [73]
on theglobal schedule algorithm(GSA), but then expanded it one step further. In GSA,
nodes keep track of a localageparameter, intialised to zero, which is updated to represent
how much time has passed, and add this information to their outgoing packets. Initially,
the ageparameter represents how long a particular node has been switched on, but if
a node sees an incoming packet with a greaterage than the localage, the localage is

30

CHAPTER 2. MAC PROTOCOLS 2.6. THEλMAC FRAMEWORK

updated to be the same as the incoming packet, thus allowing the network to converge
towards a shared timing value based on the oldest (first switched-on) node’sage.

In the original implementation of GSA, schedule information (time since last frame
timer) was also distributed with theage value in order to calculate the correct cur-
rent frame timer for the MAC protocol. In theλMAC framework, we have a separate
TimeSync module, which is used by theλMAC framework as a storage location for
the current local value of theagevalue. However, TimeSync provides periodic “frame
timers” (of variable length up to(232− 1)ms) to all application modules that require
this capability (not justλMAC layers that need it) - e.g. for experiments that require
an entire field of nodes to make a measurement at the same time (a commonly wanted
requirement for many biological experiments being proposed for sensor networks). We
do this by using theagevalue modulus the frame length to provide a frame timer every
time (localAge mod FrameTime) = 0. This allows the creation of multiple frame timers
for different application modules, while only requiring synchronisation on the singleage
value.

The time synchronisation implemented within the Network Time layer has some
relation to the more general field of time synchronisation indistributed systems (e.g.
NTP [84]), but bears closer resemblance to Lamport logical clocks [69], in that we are
more concerned about agreement within the network on a valueat any given time, as op-
posed to synchronising with external clocks i.e. “wall clock” time. However, the mech-
anism for incrementing an individual node’s opinion of the current value for the global
clock is based upon “real” clock time, and so we can maintain relatively tight synchroni-
sation between nodes without requiring continuous exchanges of time data.

The current specification of the Network Time limits synchronisation granularity to
1 millisecond, but that could be expanded in the future. The current limit of 1ms is a
trade-off due to limits of the current primary hardware platform (specifically, the AT-
Mega128 [7] processor, and its limitation of only having an 8-bit timer active when in
“sleep” mode, which at 1ms granularity requires the processor to wakeup every 256ms
to handle overflow events in the timer), but future work may beable to reduce the gran-
ularity to allow for tighter time synchronisation.

2.6.2.1 Fuzz values

All of the periodic frame timers also have an allowable “fuzz” value - if because of
updating the local clock, we jump over the time when we shouldhave fired a frame
timer, but we jump over by less than the “fuzz” value, then we fire the timer anyways.
This bounds the acceptable jitter in the frame timer event. In the event we jump too
far over the event point, the safest approach is usually justto skip the event entirely
and wait for the next one (e.g. not doing an awake period for a TDMA protocol that is
drastically out of sync with other nodes). This allows us to cope with small changes in
the network clock due to varying speeds of clocks on different nodes. We implement
this using a frameSkipped() event to signal skipping of events, and a frameGuaranteed()
event that is fired “fuzz” milliseconds after the frame() event, which has the guarantee

31

2.6. THEλMAC FRAMEWORK CHAPTER 2. MAC PROTOCOLS

that all synchronised nodes should have received their frame() event by the time a node
gets a frameGuaranteed() event.

Earlier implementations of the timer mechanism gave the fuzz value as an absolute
number of milliseconds, but after this was used in several different protocols we con-
cluded that this did not fit well with the use cases that we wereseeing. We in fact only
saw two cases for values of fuzz - for MAC protocols, with a very low fuzz value and
frame sizes in the typically<2 second range (sometimes as low as 50 milliseconds); and
for other protocols (notably aggregation) that had much larger frames (10s of seconds to
minutes or greater), and high fuzz values (>1 second).

The two cases were optimising for different constraints, but this was not fully re-
flected in their fuzz values. In the MAC case, the emphasis wason a fuzz value as
low as possible (given hardware constraints). MAC protocols could cope with an oc-
casional frameSkipped() event if the fuzz value was set verylow, as another event will
arrive shortly afterwards, but the emphasis was on tight synchronisation between frame
events on separate nodes. Typical fuzz values for MAC protocols were 2-4 milliseconds,
depending on the whims of the author of the protocol. Note that these numbers were
arbitrary and picked according to individual guesswork about how tight the synchronisa-
tion between nodes was likely to be on a particular hardware platform (and is also related
to the overall current 1ms granularity of the Network Time values). Also, too high fuzz
values for MAC protocols will effect their performance significantly, as the fuzz value
determines the separation between frame() and frameGuaranteed(), and a number of pro-
tocols will switch the radio in receive mode for that period.Ergo, increases in the fuzz
value would increase this time, and so keeping it as small as possible will reduce power
usage.

For protocols with much longer frames, a frameSkipped() is often quite bad, as it
will result in much larger gap between frame() events v.s. protocols with short frames.
Additionally, for most long frame protocols, tight synchronisation is not required, as they
are generally higher up the stack than MAC protocols, and so will be subject to other
semi-random delays (e.g. send delays from MAC or routing protocols) even if they had
tight synchronisation. Often, the goal is just “reasonable” synchronisation, and the fuzz
values were again often arbitrarily picked numbers with little thought in their decision
process.

We therefore limited the fuzz values to two values marked as LOW FUZZ and HIGHFUZZ.
LOW FUZZ will always be a value as low as possible (given platform-specific knowl-
edge outside the domain of the users of the frame timers), optimising for tight synchro-
nisation. HIGHFUZZ will be a value optimising for no frameSkipped() events, with
current values being approximately 5% of the frame length specified by the user. Taking
the decision for the actual values out of the hands of the users, and instead using a more
abstract value with clearer semantics regarding what the user actually wants removes
most of the problems we saw here, as well as being in line with the design intentions of
theλMAC framework by providing code paths (platform-specific decisions about good
fuzz values) that would otherwise be duplicated in many MAC protocols.

32

CHAPTER 2. MAC PROTOCOLS 2.6. THEλMAC FRAMEWORK

2.6.2.2 Maintaining synchronisation

The most important aspect of maintaining time synchronisation is establishing synchro-
nisation in the first place i.e. discovering neighbour nodesto synchronise with. In the
Network Time layer, we use the concept of a “sync period” to achieve this. Initially,
when a node first starts up, it stays awake for an entire sync period (currently set to 7s)
in order to discover other nodes to synchronise to. Additionally, the Network Time layer
will periodically do neighbour discovery everyn sync periods. Our current implementa-
tion does adaptive neighbour discovery, searching every 3 periods if no neighbours have
been discovered or every 30 periods if neighbours have been found. This translates to
21s or 210s (based on the 7s sync period) depending on whetherother nodes have been
found. One implication of the sync period length is that a packet must be transmitted by
every node at least once per sync period (with a PhyRequired event being fired by the
Network Time layer if a node is not sending enough packets at aparticular time), which
causes some level of overhead. Increasing the sync period length would reduce the num-
ber of overhead messages during times when the node does not need to send packets for
other purposes, but would also increase startup times, as nodes need to stay awake for
a complete sync period on startup. Further investigation isstill being done into better
values for the constants mentioned here, but the best valueswill always be application
dependant.

One of the potential problematic cases for MAC time synchronisation is how to han-
dle situations where two different groups of nodes with different values for the network
time come into contact with each other. For some other time synchronisation mecha-
nisms (e.g. S-MAC’s scheduling algorithms [148]) attemptsare made either to create a
“merged” time value from the two different network time values, or sometimes to main-
tain multiple different reference values for the time synchronisation mechanism at the
same time.

The Network Time layer does neither of these, as both scenarios tend to lead to overly
complex situations (especially once more than two groups ofseparate nodes come into
contact). Instead, the existing synchronisation method isused i.e. the oldest known age is
still the goal for synchronisation. For the two groups coming into contact - Groups A and
B, who have respectively an older and a newer network time value - the actions will be as
follows. Group A (older) will actually do nothing - their network time values will remain
“static” (updating purely due to elapsed real time, but no drastic changes). Group B, as
the nodes within it receive messages from Group A (either viaaccidental overhearing, or
during sync periods), will effectively become “absorbed” by Group A, because the Group
B nodes will update their network time values to be in synchronisation with Group A.
This may cause frameSkipped events (see Section 2.6.2.1) due to the incrementing of the
timers of Group B nodes, but the disruption should be short lived for any given node.

One of the major reasons behind the relative stability of theNetwork Time layer is
the use of the “oldest” value as a synchronisation goal, in combination with choosing the
size of the local storage variable for the Network Time valueto be large enough to avoid
wrapping around within the feasable lifetimes of most sensor networks (34 years with the
current implementation of 40-bit timers). Even if large quantities of nodes are repeatedly

33

2.7. TRANSMISSION LAYER MODULES CHAPTER 2. MAC PROTOCOLS

reset (including the “oldest” node) the “oldest” value willtend to be maintained within
the network, provided at least a single node still retains the value. Part of the logic behind
this choice is that new “oldest” nodes are likely to appear infrequently in a network (as
node failures should not cause the creation of “older” nodes), and most nodes will only
have to do significant “jumps” in their network time values early on during their lifetimes.
As jumps are disruptive to any processes relying on the Network Time value, reducing
the number of jumps should be a priority for a Network Time system.

2.6.2.3 Criticism

One possible criticism of the Network Time layer, when contrasted to the choices of
timing mechanisms in earlier MAC protocol designs, is that it attempts to generate “net-
work” time synchronisation, when most MACs are quite happy with merely local (1-hop
neighbours only in many cases) synchronisation. Firstly, given that time synchronisation
is difficult to achieve above the MAC protocol level, and it isa useful primitive to other
layers (which would not need to do additional synchronisation when using the Network
Time system), doing network synchronisation at this level is a good idea.

Secondly, as many MACs need local synchronisation, we submit that our generic
network time sync mechanism is not actually much more complicated (either in terms
of messaging or processing overhead) than most time sync mechanisms designed for a
specific MAC; indeed, it is simpler than some MAC protocol sync mechanisms [22],
while providing the required level of synchronisation for those protocols.

Thirdly, our anecdotal experiences while speaking to otherMAC designers, com-
bined with our experience of doing this ourselves, is that doing time synchronisation
correctly on real nodes ishard, and it tends to dissuade many budding protocol builders,
when their effort should be focused on the things that make their MAC protocol different,
not the common features that they should have provided for them.

We conclude that given all of these issues, the creation of a general-purpose time
synchronisation layer and providing it as an automatic service of our framework is a
good choice for most MAC protocols.

2.7 Transmission layer modules

In this section we will look at how to implement Transmissionlayer modules, with a
focus towards the standard set of WSN Transmission modules ontop of theλMAC lay-
ers, i.e. the set of functions that would be expected from a standard MAC protocol. An
exploration of what can be done with non-standard modules isin Section 2.12.

2.7.1 Notes on Transmission module design

Before we go into a more detailed look at how to build basic Transmission modules, a
number of features of the MessageNow and AllocateTime interfaces should be noted:

34

CHAPTER 2. MAC PROTOCOLS 2.7. TRANSMISSION LAYER MODULES

• The point of an AllocateTime period is to acquire blocks of time in order to send
packets with a reasonable guarantee about a node’s neighbours being in a state
where they are able to receive packets. A node does not need tobe in an Allocate-
Time period for any other purpose.

• The AllocateTime period (as marked by a startBlock() event)is only started when
a certain level of guarantee can be given that the radio medium will be at least
relatively quiet. In CSMA-based protocols this will be donevia a carrier sense
mechanism of random length (to resolve contention issues between multiple nodes
wishing to start AllocateTime), and in TDMA-based protocols this is guaranteed
by the time slot mechanisms.

• The λMAC layer will piggyback information about the remaining AllocateTime
period on outgoing packets, in order to place other nodes into the AllocateTime
state as well.

• Once an AllocateTime period is started, it cannot be stopped. This is because
of the difficulty of telling other (possibly asleep) nodes ofthis change of plans.
A node can be told to go to sleep for the rest of the time period however (via
sleepRemaining()).

• Setting setAddressFiltering() is recommended for all protocols that set the desti-
nation address to non-broadcast addresses, as this will enable theλMAC layer to
reduce the level of calls to the Transmission layer, and willalso simplify Trans-
mission layer design by avoiding duplication of address filtering code. TheλMAC
layer will also be able to use the transmitted AllocateTime value to avoid overhear-
ing the rest of this packet sequence.

• A receive() event’s return value says whether to stay awake for the rest of this
AllocateTime period or not. This is automatically handled using sleepRemaining(),
and the Transmission layer will not generally need to call sleepRemaining except
in certain special situations (for example, if you wish to receive packets for a short
period after receive(), then go to sleep).

2.7.2 Broadcast

Broadcast is simply implemented on top of a single MessageNow and AllocateTime pair.
Sending is implemented as follows

1. Call requestBlock() for sendTime(packet length) milliseconds

2. On startBlock(), call send().

3. On sendDone(), call sleepRemaining()

Receiving is also very simple, as all instances of receive()will return FALSE, as we will
no longer be receiving additional packets during this period.

35

2.8. INTEGRATING EXISTING MAC TYPES CHAPTER 2. MAC PROTOCOLS

2.7.3 Unicast

Unicast is somewhat more complicated than Broadcast, partly because it can have vari-
ants both with and without RTS/CTS. For the case with RTS/CTS, an example im-
plementation runs as follows. During the initialisation ofthis module, we should call
setAddressFiltering() with TRUE, and setcontrol lengthto the return value of sendTime(0),
as this is the length of a control (RTS, CTS or ACK) packet, because they contain no data,
only MAC headers.

To send a packet, we first calculatepackettimeas sendTime(packet length) + 3*con-
trol lengthplus some platform-dependant allowance for processing andradio state tran-
sition delays. We need 3control length intervals for the RTS, CTS and ACK packets.
We then call requestBlock() withpackettime. On startBlock() (as we have a reasonable
guarantee about the time slot, so we can start immediately),we start to cascade through
the RTS-CTS-DATA-ACK sequence i.e. we send an RTS packet using send(), wait to
receive a CTS, then send a DATA packet with send(), then wait to receive the ACK. We
return FALSE from the ACK receive in order to sleep for any left over processing time.

At the destination receiver node, we first see a receive() with an RTS packet. As this
is destined for us, we return TRUE from receive(), after firstposting a task to send a CTS
with send(). Then, the receiver waits for DATA, sends an ACK with send() and calls
sleepRemaining() (in order to go to sleep for any remaining left over processing time).
Other nodes that are not the destination for this Unicast sequence will automatically filter
out these messages and go to sleep (due to the use of setAddressFiltering()).

This is a simplified description for an example Unicast module, and our complete
implementation includes retries for lost/missed packets.However, it gives a flavour of
how Unicast can be implemented on top of theλMAC layer.

2.8 Integrating existing MAC types

Now that we have shown how we in-

Figure 2.3: WSN MAC protocol division

tend to split up existing monolithic MAC
protocols into a more generic and reusable
stack (Section 2.6), and described how
that stack works (Sections 2.6.1, 2.6.2
and 2.7), we need to go back and show
that all of this can work with existing
MAC protocols.

We divide WSN MAC protocols into
3 groups as shown in Figure 2.3. We ini-
tially divide protocols into send timing
allocated according to a “good” time for
the sender v.s. “good” time for the re-
ceiver - this separates out protocols like
Crankshaft [42] (which allocates when

36

CHAPTER 2. MAC PROTOCOLS 2.9.λT-MAC

to send a packet depending on the destination address of a packet) from the majority of
other protocols. To our knowledge, only Crankshaft and PMAC[154] use this scheme.
We can then further subdivide sender-allocated protocols into fixed v.s. any next sender
node protocols. This is approximately the division betweenTDMA- and CSMA-based
protocols, with T-MAC and B-MAC [99] both being in the lattergroup (despite the dif-
ferences between the two) and LMAC being an example of TDMA.

In the next two sections we intend to describe our implementations of aλMAC im-
plementation of T-MAC (Section 2.9) and LMAC (Section 2.10). We will go into further
details of the protocol implementations in the relevant sections, but given the built-in
concept of time allocation due to the scheduler mechanisms in each MAC protocol, con-
version to theλMAC framework was relatively simple.λLMAC caused more difficulties
due to the single-sender semantics of TDMA time allocation,but as we will show, was
still feasible with some minor modifications.

B-MAC [99] is a prominent example of a different type of protocol, despite our
grouping it with T-MAC - no consistent scheduling, continual sampling of the radio
medium (using LPL in B-MAC’s case), and a complete lack of built-in time manage-
ment. One of the challenges for theλMAC framework was to be sufficiently flexible
to be capable of implementing such a protocol, while still providing the same level of
functionality as with other MAC protocols. However, despite the differences to other
protocols, most of the issues that we would expect to encounter during the implementa-
tion of λB-MAC have already been dealt with during our creation ofλT-MAC (which
follows from our grouping of the protocols together). Implementing B-MAC given our
work on T-MAC requires two significant blocks of new code - theLPL channel sampling
can be implemented like the active/sleep periods of T-MAC (see Section 2.9.1), except
much shorter and with a fixed awake time rather than T-MAC’s dynamic one; and use of
the setPreambleLength() function of the MessageNow interface (see Table 2.3) is needed
to allow for the longer preambles required by LPL.

We believe that by showing that T-MAC, LMAC and B-MAC can be implemented
with the λMAC framework, and by providing data from our experiments running the
first two on our testbed, we adequately demonstrate that theλMAC framework is suit-
ably generic to be able to be a base for implementing the majority of sender allocated
MAC protocols. The receiver allocated group is a significantly smaller subsection of the
entire range of current MAC protocols, but as the reference implementation of Crankshaft
is based upon our work here, we do not believe the differencesare irreconcilable. In Sec-
tion 2.14.1, we outline some possible extensions to theλMAC Framework that would
both fully enable receiver allocated protocols, and reducethe level of effort required for
implementing TDMA protocols.

2.9 λT-MAC

So far we have mostly looked at generic concepts of aλMAC layer. In this section, we
describe our implementation of theλT-MAC layer, based on T-MAC [24] for TinyOS [49].

37

2.9. λT-MAC CHAPTER 2. MAC PROTOCOLS

2.9.1 Scheduling

T-MAC is a CSMA-based MAC pro-

Figure 2.4: Scheduling with different MACs

tocol, derived from S-MAC [148], but
with adaptive duty cycling. The adap-
tive duty cycling is based on the idea
of going to sleep shortly (TA millisec-
onds, defined by the time needed to re-
ceive a minimal packet, process it, and
send another minimal packet) after the
last “interesting” event - which can be
a message going out, another message
coming in or the periodic firing of a
frame timer every so often (see Figure 2.4). The frame timer length is a trade off be-
tween energy efficiency (with longer sleep times between awake periods) and latency
(due to the length of sleep before the next time we can send a packet).

We took the implementation of T-MAC for TinyOS, and adapted it to provide a
λMAC layer, including the removal of its integrated Broadcast and Unicast function-
ality. Adapting the existing T-MAC protocol to provide theλMAC functionality was
relatively simple. We used the frame timers from the NetworkTime layer to remove a
lot of the complexity from T-MAC (68% smaller code base, see Section 2.11.1), includ-
ing the removal of a significant part of the existing code which was dedicated to schedule
synchronisation (including discovery of new schedules); arole now subsumed by the Net-
work Time layer (see Section 2.6.2.2). On a requestBlock() call, λT-MAC places the re-
quested amount of AllocateTime into a nextAllocateTime variable. When T-MAC would
normally check if it has a packet to send,λT-MAC instead checks if nextAllocateTime
is not 0, and if so requests that the packet layer do a carrier sense check. If the carrier
sense returns an idle radio medium, then startBlock() is called andλT-MAC waits until
the end of the AllocateTime period before doing anything else. MessageNow send() and
receive()’s pass almost uninhibited through theλT-MAC layer. Notably, the send() is not
delayed waiting for anything else to complete, but is passedthrough to the packet layer
as rapidly as possible. If we get a phyRequired event (a request from the Network Time
layer for a packet to be sent),λT-MAC sends out a Sync packet - a packet with no actual
data payload, and only containing timing information in order to maintain the inter-node
time synchronisation.

2.9.2 Testbed data

In order to test whether theλMAC concept was viable, we comparedλT-MAC to the
existing T-MAC implementation. Our testing was done on the TNOde platform, a WSN
node derived from the mica2dot design [48]. We wished to check whether the switch-
ing from a monolithic MAC protocol to the separatedλMAC design had affected the
compiled program size for a complete program (includingλT-MAC, the λMAC frame-
work, a simple test program and the standard TinyOS system code), maximum packet
transmission rate and awake/sleep ratios.

38

CHAPTER 2. MAC PROTOCOLS 2.10.λLMAC

ROM Size RAM Size Maximum packet rate

T-MAC 22518 2123 9.9 packets/second
λT-MAC 21678 2192 9.3 packets/second

Table 2.5: Continual sending test

ROM Size RAM Size Duty cycle at 1 packet/second

T-MAC 22726 2133 14.3%
λT-MAC 21798 2202 14.4%

Table 2.6: Broadcast cycle time test

For our application testing, one of the example T-MAC applications was used - a sim-
ple radio testing application. All packets in the test application had 10 bytes of dummy
data in them, and all experiments were run for 60 seconds. We compiled the application
with nesC 1.2.4 and gcc 4.0.2 for the AVR.

To test the maximum output packet rate, we used a version of the application that
sends broadcast packets continually. Notably, T-MAC was not designed as a high data
rate MAC, but we felt this was still a useful reference test checking for similar perfor-
mance between the two implementations. The result of this test are in Table 2.5, and
show a reduction of the packet rate of only 6%, which for an unoptimised reference
λMAC was we felt was an acceptable loss.

We also tested the active duty cycle of the protocols while sending 1 test packet every
second. The result of this test are in Table 2.6, which shows that the change to theλT-
MAC implementation resulted in a<1% increase in the amount of time that the node
needed to stay awake in order to send the requested packets. The ˜14% duty cycle is
quite high for T-MAC, but this is due to a combination of a 610ms frame timer and a
69msTA, giving a minimum duty cycle of ˜11% even without any packetsbeing sent,
and optimisation of the core protocol implementation couldimprove this significantly.

Note that for both variations of the test application (Section 2.9.2) that the compiled
ROM size when usingλT-MAC was reduced by approximately 840 bytes v.s. using T-
MAC (the exact reduction varies, depending on the level of optimisation that the compiler
was able to do for the particular application).

2.10 λLMAC

LMAC [50] is a TDMA-based MAC protocol, aimed at giving WSN nodes the oppor-
tunity to communicate collision-free, and at minimising the overhead of the physical
layer by reducing the number of transceiver state changes. The MAC protocol is self-
organising in terms of time slot assignment and synchronisation, starting from a sink
node (specified by the application). Upon start-up, the sinknode sets a frame schedule

39

2.11. TESTING CHAPTER 2. MAC PROTOCOLS

and chooses the first slot in the frame as its sending slot. Next, one-hop neighbours re-
ceiving the sink’s transmissions, choose their sending slots based on the frame schedule
of the sink node. This is then repeated for all next-hop neighbours. When an application
wants to send a message, LMAC delays the transmission until the start of the node’s next
sending slot.

2.10.1 Implementation

We created a TinyOS implementation ofλLMAC based on the protocol description and
the OMNeT++ [138] code available from the LMAC authors. For time synchronisation
between the nodes, we used the Network Time layer, and so wereable to use a frame
timer to determine the start of each slot. This way, all nodesagree on the start time of
all slots. When using a frame timer to determine only the startof each LMAC frame,
intermediate clock updates during the frame may lead to inaccurate start times of slots
near the end of an LMAC frame.

Although λMAC supports sending multiple packets in a single slot, in LMAC it is
only possible for a node to transmit a single message per frame. The authors suggest
gluing together multiple messages to the same destination to prevent high latency, but
this suggestion is not implemented in the available OMNeT++program code. To make
our results comparable to the OMNeT++ implementation we hadavailable, we did not
implement this feature either.

On a requestBlock() call,λLMAC sets a flag indicating that there is a packet waiting
to be sent at the node’s next time slot. During its time slot, anode will always transmit a
packet. If a node has no data to send, an empty Sync packet is sent to keep the network
synchronised. OtherwiseλLMAC calls startBlock() and waits until the end of the time
slot to call endBlock().

Since a TDMA-based MAC-protocol does not need the full Unicast RTS/CTS/DATA/
ACK sequence to keep other nodes from transmitting at the same time, we created a Uni-
cast module that only sends the DATA packet. As the TinyOS message header already
contains information about destination node and packet length, this information was re-
moved from the LMAC-specific header.

2.11 Testing

We performed a series of tests comparing theλMAC versions of LMAC and T-MAC
to earlier ’monolithic’ implementations. In the case of T-MAC, we had the existing
implementation for TinyOS to compare against. As there was no existing TinyOS code
for LMAC, we had to work from simulation data. Our simulationwork is based upon the
simulation framework from [71], with various parameters (byte times, frame times, etc)
altered in line with the parameters used by theλLMAC implementation.

We used two tests: a Unicast test (Figure 2.5), with all nodessending to a single ’sink’
node; and a ’Cloud’ test (Figure 2.6), with two nodes designated as A and B trying to
send packets to each other, while the other nodes send broadcast data around them. In the

40

CHAPTER 2. MAC PROTOCOLS 2.11. TESTING

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
a
c
k
e
t

s
u
c
c
e
s
s
 %

Message rate [msg/node/sec]

LMAC (simulation)
LMAC (lambda)

T-MAC (monolithic)
T-MAC (lambda)

Figure 2.5: Unicast test

case of the Cloud test, we measure the packet success rate as the success rate for packets
between A and B, ignoring all other packets. The testbed datais from our deployed
network of 24 TNOdes, with power levels set to create a single-cell network with all 24
nodes within one hop of each other; the simulation data is also from a single-cell network
with 24 nodes. LMAC was set to a slot time of 50ms, with 32 slots, giving a 1.6s frame.
T-MAC was set to the standard frame time of 610ms in all cases.

As can be expected from this form of multi-environment experiment, we encoun-
tered a number of rather unexpected results; however, the end data does show a number
of useful things. The Unicast test showed remarkably similar numbers for both of the
LMAC implementations - we expected the drop-off curve illustrated on the graph as we
start to exceed the 1 packet/frame limits of LMAC. T-MAC, on the other hand, shows
a significant difference in the data. Both versions of T-MAC illustrate the characteristic
curve of an overloaded network, butλT-MAC appears to be suffering from additional
factors reducing its capability to transmit and receive packets successfully. As the packet
sizes are relatively unchanged between implementations, and they both require the same
amount of sync packets in order to maintain time consistency, we are currently unsure
as to the cause of this drop. However, noting the good data from LMAC, we suspect the
issue remains in ourλT-MAC layer rather than theλMAC framework.

The Cloud test was designed as an example of a test that LMAC should succeed at,
as illustrated by the near-perfect line of the simulation LMAC. One current issue with
the simulation environment is its lack of detail regarding the quality of radio links, and

41

2.11. TESTING CHAPTER 2. MAC PROTOCOLS

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
a
c
k
e
t

s
u
c
c
e
s
s
 %

Message rate [msg/node/sec]

LMAC (simulation)
LMAC (lambda)

T-MAC (monolithic)
T-MAC (lambda)

Figure 2.6: ’Cloud’ test

this is is probably whyλLMAC is unable to sustain data rates at this level.λT-MAC
on the other hand, outperforms monolithic T-MAC on this test, showing that the earlier
performance drop does not necessarily hold for all application scenarios. This result,
in combination with the results from Section 2.9.2 further shows that the problemsλT-
MAC encountered in the Unicast test will not occur in all application scenarios, giving
greater confidence in its general applicability.

2.11.1 Code Size

To check how large the implementations of the core modules were in each case, we
measured the nesC code with SLOCCount [140] (Source Lines OfCode).λT-MAC and
λLMAC’s proportion of the total stack is in Table 2.7. Note that this is lines of code for
theλMAC layers only, as opposed to the earlier data in Section 2.9.2 regarding compiled
size for a complete application.

Component Lines of Code % of MAC Stack

MAC Framework 3961 Variable
λT-MAC 1426 26%
λLMAC 814 17%

Table 2.7:λMAC sizes

42

CHAPTER 2. MAC PROTOCOLS 2.11. TESTING

ForλT-MAC, we had an existing TinyOS implementation, and so we could compare
λT-MAC to the older implementation. The original “monolithic” T-MAC had a total of
4367 lines of code v.s. the 1426 lines ofλT-MAC, making λT-MAC only 32% of the
original size. Notably, we do not count the lines of code in the MAC framework itself
that are required byλT-MAC, as we only count the code that would have to be written
by someone building a new implementation of the MAC protocolin each case, which is
the point of the code reuse due to the MAC framework.

2.11.2 Power tests

To further check the performance ofλT-MAC, we wanted to measure its power usage.
Unfortunately, the existing TinyOS T-MAC implementation turned out to be not switch-
ing off the radio as much as it we would expect, causing unevenpower data and hindering
direct comparisons. Therefore we decided to stick to scenarios where existing research
(i.e. the original T-MAC paper [24]) provided us with examples of how a T-MAC imple-
mentation should behave in terms of power used. We used a simple two-node, unicast
sender-receiver pair, with the sender node transmitting 1 packet/second.

 0

 5

 10

 15

 20

 25

 30

 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

P
ow

er
 (

m
A

)

Time(s)

Receiver
Sender

Figure 2.7: BasicλT-MAC power trace

Figure 2.7 shows ˜1.5 seconds of the power readings from thisapplication, withλT-
MAC demonstrating the classic T-MAC “awake for short time, sleep for long period”
graph, clearly demonstrating good synchronisation between the two nodes.

43

2.12. FURTHER TRANSMISSION MODULES CHAPTER 2. MAC PROTOCOLS

 0

 5

 10

 15

 20

 25

 30

 6.752 6.76 6.768 6.776 6.784 6.792 6.8 6.808 6.816 6.824

P
ow

er
 (

m
A

)

Time (s)

DATA ACK

Reciever
Sender

Figure 2.8: Detail of DATA/ACK sequence

Figure 2.8 shows a detail from part of a DATA/ACK sequence with the nodes. Be-
tween 6.768s and 6.784s the DATA packet is being transmitted, and the ACK is being
transmitted between 6.784s and 6.796s.

The amount of power used, and the relative amounts of time spent in transmit and
receive mode appears to be consistent with our expectationsfor a T-MAC implementation
(see Figure 2.4 for the typical T-MAC power sequence), giving us additional confidence
in the ability of theλMAC framework to correctly implement this protocol.

2.12 Further Transmission modules

In this section we look at some Transmission modules that canbe implemented on top
of theλMAC layer that would not be considered part of a standard MAC protocol, but
would provide useful additional primitives for other applications. Notably, these would
be non-trivial to add to most normal MAC protocols, as we would either have to try and
build them out of Broadcast and Unicast operations, which would be significantly sub-
optimal; or we would need to rebuild the MAC entirely. Our modular approach makes
these additions not only possible, but relatively easy.

44

CHAPTER 2. MAC PROTOCOLS 2.12. FURTHER TRANSMISSION MODULES

2.12.1 ExOR

ExOR (Extremely Optimistic Routing) is a “one send, many replies” approach to reliable
multicast for routing protocols, first explored by Biswas and Morris [13], and an extended
version is proposed by the Guesswork routing protocol ([2] and Chapter 3). Both variants
can be implemented on top of the MessageNow and AllocateTimeinterfaces, but would
require significant effort to implement inside existing MACprotocols.

An ExOR sending node sends a packet that not only contains thedata for the packet,
but also a list of other nodes that should respond (in the order that they are meant to
respond in). Every node that is in the list that receives the packet waits sufficient time for
all of the earlier nodes in the list to respond, and then sendsan ACK to the sender node
(see Figure 2.9). This can be used for a number of things - for example, implementing
Reliable Broadcast, as the sending node knows that all nodesthat it receives an ACK
from have received the packet; or making a best-effort next-hop transfer in a routing
algorithm (by using the ACKs to implement an election mechanism to pick the “best”
possible next-hop node that has correctly received the original packet).

Figure 2.9: Example ExOR packet timeline

From the point of view of implementing ExOR as a Transmissionlayer, it can be
considered as a variant of Unicast, with no RTS/CTS and a series of receiver nodes, all
of which need to pause a variable amount of time before sending their ACK packets, and
then call sleepRemaining() to avoid overhearing the remaining ACKs. As the destination
address field is invalid in this case (as there is a list of destination nodes later on in the
packet), we need to switch off address filtering (using setAddressFiltering()) and do the
separation between destination and non-destination receiver nodes in the Transmission
layer. We will revisit ExOR in Chapter 3, and show there how itcan be built in more
detail.

2.12.2 Priority Queueing

Another possibility that arises once theλMAC layer has been implemented is priority
queueing [74, 132] which has been requested by various applications - namely, allowing
for messages to be sent out in an order different from that which they were received
(either from other nodes in routing scenarios, or events from local sensors). In standard
MAC protocols, the “send” method is a fire-and-forget concept i.e. once the “send” has
been called, cancelling the message (or even being aware of whether the message is
queued or actually being sent right now) is impossible.

45

2.13. RELATED WORK CHAPTER 2. MAC PROTOCOLS

However, using theλMAC layer, a priority queue can be implemented. Specifically,
that requestBlock() corresponds to the normal “send” call,and that although the corre-
sponding startBlock() would normally be the time to send theoriginal packet, any other
packet can be sent. To implement a good priority queue, requestBlock() should be called
when there is a packet to send out, but with a length appropriate to the maximum size
packet that we may wish to send. On startBlock(), we then sendthe highest priority
packet that we have on hand (which may well have arrived sincethe requestBlock() call),
and call sleepRemaining() on sendDone() to trim the listening time appropriately to the
length of the packet we actually sent.

2.13 Related work

At some levels, the core concepts ofλMACs v.s. traditional MAC protocols can be
viewed as similar to the micro v.s. macro-kernel debate in conventional operating sys-
tems. In common with microkernel design [34, 106], theλMAC layer is able to separate
out parts of a WSN application that would normally be considered a very complex part
of the system (as both MAC layers and operating system kernels in general tend to be
regarded by many programmers as “here be dragons” areas of code), and these separated
parts are then able to be altered with a significantly lower chance of affecting the rest of
the codebase.

Polastre et. al [100] proposed the Sensornet Protocol (SP) that provided a greater
level of control to applications wishing to influence the choices made by lower level
protocols. Their system created a much more horizontal design for the various levels of
an application stack, as opposed to the more traditional vertical design in normal MAC
protocols. The horizontal design allowed a lot of control atapplication-level, with the
trade-off that an application was able to tweak core parts ofthe MAC layer that could
potentially introduce significant instabilities in the MAC, unless the application was fully
aware of how the particular MAC would react to those changes.In the λMAC design,
applications have large quantities of control - they can allocate arbitrary blocks of time
and do pretty much whatever they like during this time - but ina way that preserves
the integrity of theλMAC layer, as it is able to delay AllocateTime requests untilit
is a “good” (for values of “good” defined by the individualλMAC layer) time for the
application to have control. TheλMAC separation of control, with most timing control
out of the hands of the application designer, allows for cleaner, safer, and simpler design.

Ee et. al [31] attempted similar goals, but for routing protocols. Their approach
looked at providing a generic toolkit for building routing protocols, and for creating
modules that could be used to piece together protocols, including the possibility of new
hybrid protocols built from parts of earlier protocols. Their wish to do this as opposed to a
framework design such as we proposed is possibly indicativeof a wider variety of options
in routing protocol design, as opposed to the relatively small set (time management) that
we have identified here for MAC protocols.

Cross-layer design, interlacing MAC design with other protocol layers (typically
routing [75, 95], although localisation protocols have also been integrated with MACs [5]),

46

CHAPTER 2. MAC PROTOCOLS 2.14. CONCLUSIONS

is another direction that has seen some effort in MAC design.For some cases e.g. the
ExOR transmission module (Section 3.3.2), theλMAC framework allows building mod-
ules within the MAC stack that are designed to work closely with other layers (the Guess-
work routing protocol in Chapter 3 in this case), thus enabling limited aspects of cross-
layer design without the tight bindings between layers (andsubsequent restrictions on
choice of MAC protocol) that is typical of most cross-layer design.

2.14 Conclusions

We set out to redesign and rethink how MAC protocols are designed for WSNs, to create
a new and improved design concept, and to modularise common functionality. We have
managed to do this, providing new capabilities and a refocused take on the role of a MAC
in the WSN network stack. The reduction of the role of a MAC protocol to its core feature
of time management, by separating out the Network Time layerto provide application-
wide time synchronisation, as well as the Transmission layer modules to allow for clean
separation of the logic required for features like Unicast,has given a new look at an old
topic.

From our testing here, we have managed to show that our initial attempt at a reference
λMAC layer (λT-MAC) was able to achieve similar performance, both in terms of data
rates and power usage, to a traditionally designed MAC protocol, but with a significant
decrease in complexity. Lines of code is not always a good indicator of system complex-
ity, but the reduction of duties required ofλT-MAC v.s. monolithic T-MAC is. We were
also able to show that LMAC, a TDMA-based protocol that we expected to be a difficult
case, turned out to be not so hard to implement. Some modifications to our existing work
were required, and more work withλLMAC is required, but it has already managed to
show good performance v.s. existing work with traditionally designed implementations.

In contrast to the areas that we will look at in later chapters, previous MAC protocol
design turned out to be less abstracted than the more optimalform we have shown here;
as opposed to higher levels of the protocol stack which tend to have the problem that
abstraction has been taken too far, and needs reducing to a more suitable level. We
postulate that this has to do with the perception that a MAC protocol is a very low-level,
heavily hardware-dependant protocol, that should be tightly integrated with the particular
radio hardware. TinyOS 1.x, with its multiple network stacks for different hardware
platforms is a clear expression of this belief. In contrast,our example implementation
here is almost entirely platform-independant code, with only the most basic of timers and
radio interfaces being platform-specific, and we still havesimilar performance to tightly
integrated stacks.

By implementing two significantly different MAC protocols,we have shown that our
framework is sufficiently generic to be used by the wider community as a general-purpose
MAC creation framework. Especially for experimental platforms, the importance of al-
lowing people to extend existing work without having to reinvent the wheel cannot be
overemphasised. The emphasis on the use of platform-independant code is a key ele-

47

2.14. CONCLUSIONS CHAPTER 2. MAC PROTOCOLS

ment of this, as it makes porting to a new hardware platform (which happens relatively
frequently in WSN research) not very difficult at all.

2.14.1 Future Work

Certain adaptions of the AllocateTime interface would allow further integration with
other MAC protocols, and enable more efficient implementations of TDMA-based pro-
tocols. Extending the AllocateTime interface to provide more information about what
nodes are the destinations of the packets to be sent during the interval would allow bet-
ter allocation by TDMA schemes, and possibly noting that certain time slots are more
reliably allocated than others, as most TDMA protocols havemore reliable guarantees
about the lack of other nodes transmitting v.s. CSMA protocols with carrier sense. In
general, finding better ways to specify more information about the usage patterns for a
given AllocateTime slot in a generic way to theλMAC layer will help smarterλMAC
protocols allocate time more effectively. We would also like to explore possibilities for
more types of Transmission modules.

We hope that one of the side effects of our creation of theλMAC framework will
be the creation of more MAC protocol implementations for TinyOS, as many new MAC
protocols are currently only implemented in simulation, and simulation is a poor guide
to how something as low-level and radio hardware dependant as a MAC protocol will
behave on real hardware.

48

Chapter 3

Routing

In this chapter:We deconstruct the idea of “unicast links” between nodes,
build a new set of sending primitives, and use them to build anenergy-
efficient routing protocol.

Packet routing is a problem common to all networks; big and small; wired or wireless;
electronic or physical - we all want to be able to transfer items from point A to point B.
The wider field of distributed systems deals with a problem similar to the real world -
how do I get from any point to any other point by passing messages from one node in
the system to adjacent nodes. The canonical example here is the Internet, with clients
wanting to get data from servers, and needing a way to establish a usable route between
the two. For most wireless sensor network problems, the required routing is often less
complicated given the data patterns, but we need more efficient solutions for the paths to
be viable.

In all cases of routing, you want to do this efficiently, but the metrics for efficiency
vary from situation to situation. For conventional networks, the emphasis is usually on
bandwidth and minimum latency, along with generally considering all links between
nodes as being perfect. For situations where the links are imperfect (e.g. wireless links),
the imperfection is masked by retries and acknowledgements. In effect, a “perfect” link
with reduced bandwidth and increased latency can be createdfrom an imperfect link.
TCP [101] is the most commonly used example of this, being used to create perfect end-
to-end links from imperfect links despite its known issues with wireless systems [9, 10,
29, 82, 146].

For sensor networks, high bandwidth is not very important, low latency is often less
important, and due to the low-cost hardware our radios are often of lower quality than
most other wireless networks. As we discussed in Chapter 1, the most important metric
for sensor networks is power consumption, which conflicts with any attempts to actu-
ally do anything. To create a minimum power system, we need tocreate a system with

Most of the content in this chapter has been published as “Guesswork: Robust Routing in an Uncertain
World” by Tom Parker and Koen Langendoen at the 2nd IEEE International Conference on Mobile Ad-hoc and
Sensor Systems (MASS 2005) [2]

49

3.1. SENSOR NETWORK ROUTING CHAPTER 3. ROUTING

non-zero bandwidth and non-infinite latency, while doing the minimum effort over a
zero-bandwidth/infinite-latency system such that we can provide what the application
needs and (preferably) nothing more. The strictness of these metrics may vary, given the
possibility of state space explosion when many different choices are possible for a route -
the routes being chosen often only need to be “good enough”, not perfect. If for example
we only need a system to run for two months, reducing power consumption down to the
level where it could run for a year is not necessary, especially if we can improve the level
of services (bandwidth, latency) that we provide to the application.

3.1 Sensor Network routing

Given the new emphasis on power management as the key metric,most routing proto-
cols have a number of significant problems when applied to Wireless Sensor Networks.
The major trade-off for non-data overhead in a routing protocol is between adaptability
to changing network conditions and maintenance overhead, but this trade-off illustrates
clearly the issues with WSNs vs. conventional wired networks(limited power, limited
memory storage, limited processing, etc). For conventional networks (e.g. the Internet),
adaption is minimal, as most of the nodes tend to be statically located and maintenance
overhead can contain quite a lot of data without significantly impacting the ability of the
network to transmit the data required by the application.

Given the scarcity of power availability to WSNs, adapting tochanging network con-
ditions is difficult, as this often requires the re-dissemination of routing information for
a sink or other critical node across a significant proportionof a network. The overhead
required to keep standard routing information up-to-date when the actual amount of data
being transferred across said network is taken into consideration is often unacceptable.
This optimising for very low traffic rates, as opposed to traditional networking, which
tends to optimise for high traffic, changes the balance between what was previously con-
sidered as acceptable overhead for “normal” data rates, as well as the fact that any over-
head reduces the lifetime of the network (due to finite power limits). This all means that
normal approaches need to be revisited.

We already showed earlier a little bit of how the approaches for WSNs are different
(Section 1.2 on page 4). Sensor networks use two patterns forrouting their data: local
neighbourhood co-operation and source-to-sink. The former is generally trivial, or can
be implemented trivially for k-hop neighbourhoods (k is often, but not always 1 in this
case), but the latter is more difficult. Source-to-sink routing is used to implement one
of the core design goals for most sensor networks - getting data about the environment
around the nodes to somewhere where analysis can be done on it. Sometimes some level
of analysis is done within the network (which we cover in Chapter 6), but often we need
to move a significant proportion of the gathered data to a sinknode that is generally
connected to the wider world.

A significant number of protocols have been suggested for sensor networks, some
of which are developed from existing network routing protocols, and others that are de-

50

CHAPTER 3. ROUTING 3.1. SENSOR NETWORK ROUTING

signed towards the specific problems of sensor networks [3, 4]. The protocols can be
classified into four groups: basic, hierarchical, data-based and geographic.

3.1.1 Basic

The protocols in the “basic” group are mainly those ported from earlier work in mo-
bile ad-hoc networks and related network applications. Examples of this group include
Flooding and Gossip-based protocols [44]; AODV [96] (Ad-hoc On Demand Distance
Vector); DSDV [97] (Destination-Sequenced Distance Vector); and DSR [56] (Dynamic
Source Routing).

Many of the basic protocols are relatively heavyweight, anda common method for
route discovery is flooding a local area to do a greedy search for a particular destination
node. Also, some (e.g. DSR) will require a complete list of nodes to route through to
be stored in the packet that is being transmitted. This groupof protocols were origi-
nally designed for the any-to-any routing case, and although these solutions will work
with source-to-sink routing, they are substantially inefficient. However, they are simple,
and in the difficult environment of sensor networks, a simpleyet robust approach with
multiple retries of failed packets can sometimes be a viableoption, despite the energy
requirements.

3.1.2 Hierarchical

Hierarchical routing protocols for sensor networks mainlyconsist of variations on the
theme of clustering techniques [38, 43, 149]. Subgroups of nodes within the network
talk to elected “cluster head” nodes, who then forward messages through a backbone
network built up by routing through cluster head nodes. The major advantage of this
technique is that most nodes only need a 1-node routing table(the local cluster head),
and the cluster heads only need to talk to a smaller list of nodes. By reducing the list of
nodes that need to be communicated with, a large network can exhibit the efficiencies of
a network an order of magnitude smaller. Additionally, nodes within a cluster may well
be able to sleep for larger periods of time due to the lack of need to forward messages for
other nodes. Some clustering techniques take this one step further, and create clusters of
clusters - effectively repeating the same process, but using clusters rather than individual
nodes as the smallest units [12].

Hierarchical techniques have several disadvantages, including the additional over-
head for cluster head elections, as well as the need to changecluster head every so often
(or the cluster head nodes will run out of power far earlier than the other nodes). Cluster-
ing is a relatively expensive method for routing in terms of setup costs, but theoretically
these costs will save energy over the long term given sufficient message traffic. Some
protocols have been developed to reduce the overhead, including Passive Clustering [38]
techniques to piggyback election data onto other packets, but the underlying trade-off
between cost of setup v.s. energy saved over time remains.

51

3.2. PROBLEMS CHAPTER 3. ROUTING

3.1.3 Geographic

Geographic routing protocols use the physical locations ofnodes to determine routing
paths. They therefore require nodes to have knowledge of their locations - however, as
this is a useful piece of information to other levels of the application stack, and with
the possibility of local co-ordinate systems as well, this is not so much of a problem.
Some [87] use the idea of a trajectory between the current location and the destination
node to calculate an ideal vector to travel along, which represents the shortest path in
space between the two points. The next hop neighbour is chosen using closeness to the
ideal trajectory, as well as distance from the destination node to choose the best candidate
node. Others [59] simply use distance to the destination node.

One of the major problems with geographic routing is that nodes are not evenly spread
out, and it can often be easy to reach a node that was a local optimum for reaching the
destination node, but has no neighbour nodes that are closerto the destination, due to
an “empty” region in the topology of the network. The techniques used in this situation
contain the major differences between different geographic routing protocols. GPSR
(Greedy Perimeter Stateless Routing) [59] then routes around the perimeter of the empty
region; Trajectory Based Forwarding [87] uses a combination of greedy forwarding and
limited flooding to work around the problem.

3.1.4 Data-based

In contrast to the other groups of protocols addressed so far, data-based protocols at-
tempt to make routing decisions not based on the sink needingto receive all of the data,
but on the idea that the sink node is only interested in certain subsets of the available
data. These protocols commonly feature advertising messages by nodes with metadata
describing what information they have available, or requests from the sink for certain
types of information, including concepts like the idea of the sink being “interested” in
certain forms of data.

SPIN [66] was one of the early works in this area, using an advertising mechanism to
locally disseminate information about a node’s data. Information from a node however
only reached a limited distance, and when the sink was far from the source node then the
information did not always arrive. Directed Diffusion [54]improved on the basic idea
by making the sink initially propagate interest information across the whole network,
and using this interest flood to determine the complete routethat a particular piece of
information should take to an interested node. The lack of fixed routes, and the use of
fully data-centric routing was a significant milestone in sensor network routing.

3.2 Problems

All of the protocols listed above - with the exception of Flooding-based protocols - have
one core problem, in that their basic mechanism for transferring data from one node
to another is a unicast transmission. Unicast, in a wirelessnetwork, is an abstraction

52

CHAPTER 3. ROUTING 3.2. PROBLEMS

built on top of a series of broadcast transmissions. If one ofthese transmissions fails (a
relatively likely event) then the entire sequence fails, and is generally just restarted. If we
have uni-directional links (as opposed to the bi-directional links assumed by most wired
protocols), then this will keep on happening.

The concept of a “link” between two nodes is itself another abstraction. The concept
of a “wire through the air” or the frequently quoted “no cat” conception of radio1 is an
idea with no actual basis in the physical world. The actual sequence of events for com-
munication between two nodes, A and B, is closer to the following (shown in Figure 3.1):

1. Node A broadcasts a message which contains Node B’s id. Nodes B,C,D and E
receive the message.

2. Node B broadcasts another message, which contains Node A’s id. Nodes A,C,E
and F receive the message

A

B
C

D
E

F

(a) Step 1

A

B
C

D
E

F

(b) Step 2

Figure 3.1: Message Sequence

Several points are of note here. Firstly, Nodes C, D, E and F get messages that they will
then discard as they are not destined for that node. Messagesnot for a node look exactly
the same as messages for a node (from the point of view of the radio hardware) but some
of their encoded data indicates a different node id. Secondly, if either step fails i.e. the
node that we wanted to get a message to in each case fails to receive the message, then the
whole sequence is repeated, and may well fail again. However, one of the other nodes
may have received a message that was not destined for them, and if they were smart
enough to realise what has happened and use that message as opposed to discarding it,

1Albert Einstein, when asked to describe radio, replied: ”You see, wire telegraph is a kind of a very, very
long cat. You pull his tail in New York and his head is meowing inLos Angeles. Do you understand this? And
radio operates exactly the same way: you send signals here, they receive them there. The only difference is that
there is no cat.”

53

3.3. PARTIAL SOLUTIONS CHAPTER 3. ROUTING

then they could be the node repeating this sequence of messages, as they may well have
better odds of succeeding with the transmission.

Flooding protocols, on the other hand, have broadcast transmission as their basic
mechanism for transferring data. This is, in a way, a better idea because unreliable
broadcast (being one step down the “abstraction stack”) is an intrinsically more effi-
cient operation than unicast. However, flooding is not a smart protocol, with the repeated
transmission of messages containing no feedback mechanismto either a) determine if a
message has already reached the destination or b) succeededat the end of a sequence of
repeated transmissions, both removes the improved efficiency and does not provide any
guarantees (or knowledge) about transmission success/failure.

The abstract concept of a link is also connected to the abstraction of a data packet
as a physical object which we discussed earlier in Section 1.3.2. As we showed above,
wireless transmissions are based on broadcast transmissions, which is incompatible with
the notion of a single physical object, and a better mental model may be relating wireless
transmissions to being like a person speaking, and that their voice may be heard by other
people who are nearby, but this also has flaws (as shown in Section 1.3.2).

3.3 Partial Solutions

The problem of the lack of proper “links” has been previouslyexamined, and some partial
solutions towards solving these issues have been already proposed. In this section, we
will look at two of those, and show the remaining issues.

3.3.1 ETX

Most routing metrics have cut-off levels - a link is considered to be arbitrarily good or
bad. For most realistic scenarios, this is often not the case[26]. Sometimes we will have
a lot of good links, and then we can discard more, sometimes wewill have a very bad
connection to the sink node, but we still need to be able to communicate.

Expected Transmission (ETX) count [25] provides an improved metric for routing
decisions, based on the expected number of transmissions via a particular next-hop node
to reach a particular destination node. This allows for adapting to the complete variety
of node link conditions [155] - everything from perfect links to dealing with broken and
partial links.

A partial link for example will increase the ETX value for a path because it is not
always totally reliable, and broken links can be handled by significantly increasing the
ETX value of a node that cannot find its next-hop neighbour, asa node with no next-hop
neighbour can thought of as a node with a with a very high ETX value to the destination
node.

For example, we may also have cases like Figure 3.2, where a shortest-hop algo-
rithm would pick Route 2. But, this has a higher ETX and therefore a higher average
transmission count than Route 1, despite the fact that it requires fewer hops.

54

CHAPTER 3. ROUTING 3.3. PARTIAL SOLUTIONS

Figure 3.2: Not all links are equal

ETX also allows for dealing with heterogeneous networks with gateway nodes (nodes
with a faster link over another network to the sink, and usually an external source of
power) - these can simply declare their ETX cost to be very small, as their faster link and
external power means they represent a much better route to the sink.

In the original ETX specification [25], De Couto et al. used probe packets to deter-
mine what the ETX cost for a link would be. This is expensive, with an unacceptably high
overhead cost for low transmission rate scenarios i.e. mostWSN applications. Addition-
ally, because the probe packets are generally a lot smaller than actual data packets, probe
packets do not necessarily provide an accurate picture of how good a link is for data pack-
ets. Other options include monitoring the data packets being used (which has the problem
that initial packets will have an inaccurate ETX value) or approximations based on radio
signal strength values of packets received from the destination node (which assumes the
existence of a valid mapping between signal strength and reception probability).

3.3.2 ExOR

ExOR [13] uses a “one send, many replies” idea to do localisedgreedy routing, providing
a better utilisation of the basic broadcast medium available to WSNs. This is based
on the idea of a set of neighbours receiving a message from a sender node, all of the
specified neighbours sending an ACK for the message, and the best next-hop node for a
particular destination (of the set that receive the message) gets chosen, without having to
do additional communication beyond the Data/ACK sequence already performed.

Figure 3.3 shows an example timeline for an ExOR packet. The DATA segment is
sent by the sender node, which includes a list of neighbours in the order of how many
hops it would take to get from that neighbour to the destination node. The neighbours
(nodes 3,2,4 and 1 in this case) reply in the order that was specified in the DATA message.

55

3.4. GENERALISED EXOR CHAPTER 3. ROUTING

Figure 3.3: Example ExOR packet timeline

If a neighbour node does not hear any reply messages for nodesearlier in the order than
itself, then it forwards on the message. If all of the neighbours can hear each other, then
this will result in only one sending on the message. To help this process, if a node has
already heard a reply message when it sends its reply message, then it replies with not its
own id, but the id of the best (i.e. earliest in the neighbour list) node that it has heard a
reply message from.

The use of shortest-number of hops by the originally proposed version of ExOR
(which is not necessarily a good choice for routing decisions, as we discussed on page 54)
relied on the knowledge of a local node about its neighbours,because it required that the
neighbour list of an ExOR packet should always be in order of preference, based on
information available at the start of the ExOR sequence. This creates a situation which
is prone to allowing out-of-date information to be maintained for longer than it should
be and also stops a number of possible useful extensions to the protocol, as this relies on
locally-cached data about neighbours v.s. querying the neighbours for their current state.

3.4 Generalised ExOR

In this section, we present a series of alterations to basic ExOR, broadening its scope
and allowing for a variety of “choice functions”, includingone that uses ETX values.
We then use the generalised form to create new useful primitives for routing protocols -
specifically, a reliable broadcast mechanism, and a reliable way to do source-to-sink data
transmission.

3.4.1 Choice Functions

Generalised ExOR specifies the neighbour list in an arbitrary order, and the neighbours
respond with a particular value (˜1 byte of data for most choice functions). Which value,
and the resulting actions depending on that value, depend onthe particular effect that is
required. A choice function defines how the protocol responds to ExOR messages, in-
cluding how a particular given node receiving an ExOR message will then decide whether
the message should be forwarded onto other nodes.

56

CHAPTER 3. ROUTING 3.4. GENERALISED EXOR

Some useful possibilities include:

• Sending the lowest hop count that this node has heard (or its own if it has heard
none so far), and forwarding if we have the lowest hop-count heard. This is the
original ExOR choice function.

• Sending the lowest ETX value that this node has heard (or its own if it has heard
none so far), and forwarding if we have the lowest ETX value heard. We refer to
this as ExOR-ETX.

• Sending a bit-field representing the set of nodes that this node has heard an ACK
for (including its own), expressed as a series of bits in the same order as the orig-
inal transmitted set of neighbours. The original sender canthen OR together the
received bit-fields and infer the list of nodes that have received the message, thus
allowing for a reliable broadcast mechanism with reduced cost compared to uni-
casting to every neighbour. The OR’ing together of the received bit-fields allows
the sender to get a good picture of what nodes have received the message, even in
the case of asymmetric links. We refer to this as ExOR-Bcast.

3.4.1.1 Multi-hop Reliable Broadcast

Figure 3.4: Multi-hop broadcast example

ExOR-Bcast can further be improved as a method for reliable broadcast over multiple-
hops i.e. a message flooding scenario, by overhearing of broadcast messages from neigh-
bours. This can be used to reduce the set of neighbours that weneed to send a message
to by eliminating those that we have heard an ACK for (or have seen another ACK that
contains the relevant bit set for that neighbour).

For example, see Figure 3.4.A is a node that has sent an initial ExOR-Bcast toB and
C. C then proceeds to do ExOR-Bcast toD andE. If B overhears any of the replies from
D or E, it can determine if they have heard the broadcast, and so therefore it may not be

57

3.4. GENERALISED EXOR CHAPTER 3. ROUTING

necessary forB to do ExOR-Bcast at all, or it can at least reduce the set of neighbours
that it needs to send the message to.

3.4.1.2 ExOR-ETX

With ExOR-ETX, if two nodes have the same ETX value (which is aquite likely scenario,
especially in cases with reliable links) and both receive anExOR-ETX message, they
will both by default decide to forward on the message, resulting in duplication. This may
occur many times, resulting in an significant increase in thenumber of messages sent in
the attempt to successfully deliver one message. In a numberof likely scenarios this is
not so much of a problem, as in many cases with equally good next-hop nodes they will
both be travelling a similar path to the sink, and so the two routes will likely overlap later
on and the duplicate message can be filtered out at that point.

However, a better solution to the duplication problem is to change the metric field
for ExOR-ETX, reserving one bit (usually the high bit) for use as a “sender” bit. A node
sets this bit to indicate that it has taken responsibility for making sure that the message
is sent, not that it will necessarily send the message. If a node has decided it is to be a
sender, and it sees no other replies with a sender bit, then itsends out the message. If
however a node sees another message with a sender bit and an equal ETX, then it must
make a decision whether it is a sender or not. This decision isbased on an arbitrary, but
fixed (for a particular network) function for any given network, that will always be able
to decide a single sender node. The current implementation uses node ids, and the node
with the highest id is the sender.

3.4.2 Inverted ExOR

One problem with the ExOR methodology is what we call the “neighbour bootstrap”
problem. When a network has very little traffic, then it may be the case that a node does
not receive any messages from its neighbours, or only from a subset of them, and that
the node needs to be able to send messages to the neighbours that are being quiet and not
announcing their presence. Communicating with these nodesis difficult due to the fact
that ExOR requires neighbour knowledge for the scheduling of the ACK messages.

To combat this problem, we provide another variant on ExOR using an inverted
neighbour list i.e. the neighbours that are in the list in theExOR message should not
respond. For a bootstrap scenario with no currently known neighbours, the list may well
be empty. The message specifies instead a time period (specified as the number of control
packet intervals) after the message has been sent, in which nodes not in the list should
respond. Each node that responds picks a random interval within the specified time pe-
riod to respond (using slotted aloha [112] with the transmission time of a control packet
as the interval).

With this random choice, the likelihood of collisions increases significantly, but the
focus of this method is acquiring information from some neighbours, in order to reduce
the problem of having sparse neighbour information. In the case that we have not re-
ceived information from enough neighbours, then the message can be repeated, adding

58

CHAPTER 3. ROUTING 3.5. GUESSWORK

the successful neighbours from earlier stages to the “do notsend” list each time. The
reasoning behind this is to reduce the number of collisions,by telling the neighbours that
we have already received data from not to reply.

An additional constraint on the design of the control function that can reduce the
collision rate is only having neighbours that have something useful to say responding
(as opposed to the “everyone should respond” models used forstandard ExOR) e.g. in a
message routing scenario, only nodes that have a good route to the sink should respond.

3.5 Guesswork

Now that we have these improved primitives, we can build a better routing protocol.
Guesswork is an adaptive, probabilistic routing algorithmfor wireless ad-hoc sensor
networks, using local knowledge of best guess next-hop nodes to efficiently implement
source-to-sink routing. Guesswork is based upon ExOR-ETX (Section 3.4.1.2), and our
multi-hop reliable broadcast (Section 3.4.1.1) mechanism, and extends these to allow for
adaptation to changing link qualities. Guesswork also usesa technique for creating and
adapting ETX values for destination sinks over time using information from the data sent
over a network, and so be able to adapt to changing network scenarios. It is designed to
work efficiently in a wide variety of application scenarios,being able to cope with low
quality links as well as both static and mobile networks, andall with a minimum amount
of overhead.

We firstly introduce the main framework of the Guesswork protocol, show how this
works with theλMAC framework (Chapter 2), and then present simulation results for
Guesswork and other routing protocols on top of a variety of MAC protocols.

3.5.1 Initialisation

In order to formulate a good solution to the source to sink routing problem, first we need
to look at our discovery process for the sink nodes themselves. One way is that all nodes
are automatically told about all of the sink nodes at startupi.e. by hard-coding the sink
node information into the nodes. This is however inflexible,assumes that we already
have the sink information at the time of system deployment, and is generally unsuited for
ad-hoc WSN scenarios.

A better solution is to do initial flooding of the sink information to the network. If we
have a reliable broadcast mechanism then we can reduce the flooding to a single instance
per sink. When a new node starts up, it can request the sink information known to its
neighbours. A possible extension to this is the inclusion ofquery information within
the sink broadcast (i.e. what kind of data a particular sink is interested in, similarly to
Directed Diffusion [54]), but for now we are only considering the situation where all
sinks want all the information. With this initial sink to sources flood, we can discover the
initialisation ETX values (one per source node) for a sink.

59

3.5. GUESSWORK CHAPTER 3. ROUTING

This information may not be perfectly accurate (asymmetriclinks will cause prob-
lems for example), but it represents a reasonable first approximation to the correct current
ETX for a sink.

3.5.2 Message Transmission

Guesswork relies on the existence of a reliable protocol to implement source-to-sink
transmission once an ETX value for a particular sink is knownby a source node. Packets
being transmitted with Guesswork also contain a TX count so far for the packet.

3.5.3 Adaption

Nodes have an initial value for the ETX value for the sinks in the network (from the
Initialisation phase), but this will change over time as thenetwork alters (node failures,
broken links, new links, etc), so we need to be able to adapt the ETX value for a sink over
time. One way this can be done is by propagating route update packets back to source
nodes when a successful transmission to a sink node has differing values for the number
of transmissions used v.s. the original ETX value. The routeupdate contains the actual
TX count that was used for the particular source to sink route.

Route discovery for the sink to source route can be done by thenodes on the path (P)
that a particular source node (A) uses to get to a sink node (S), because all of theP nodes
will have a TX count for the incoming packet fromA, and so they can record this as an
estimated ETX to return toA. The new ETX toS for each of the nodes along the path
can also be updated, by subtracting the ETX value that the packet had on the way in at a
particular node from the total TX value that is being reported in the route update packet.

If we have a route update, then we have a new ETX value. This cannow be used
to update our current recorded ETX value, using a learning function based on these two
values. This is done because a single changed route cost doesnot necessarily mean all
transmissions to that sink will be equally low/high. The simplest form of this is:

ETXupdated= ETXnew∗LearningConstant+ETXold∗(1−LearningConstant)

where the value forLearningConstantis ≤ 1. Earlier work in similar areas [103] sug-
gests values in the 0.2 to 0.4 region, but more experimental testing would be needed to
determine suitable values for typical applications.

An additional optimisation is the aggregation of route update packets, as these are
only used to propagate the ETX value back along the sending path. Instead of sending
one route-update for every message with a changed ETX, an aggregate update consisting
of an averaged ETX (with a packet count) for a set of packets can be sent back to the
sender node. A suitable mechanism for this would be waiting until no packets have
been received from a sender forx seconds (10 for example) before sending the aggregate
route update. Also note that if the aggregate ETX is very close (e.g.<5% change) to
the original source node’s ETX for our sink, then we can simply discard the route update
completely as no update is necessary. These measures reducethe number of route-update

60

CHAPTER 3. ROUTING 3.6. IMPLEMENTATION

packets so that they are only generally sent when the networkis changing and during
periods of network stability they do not need to be sent at all.

3.5.4 Failure Resilience

New route discovery in the event of a failure (no responding neighbouring node has a
lower ETX than the current node) consists of bouncing the packet back up to the previous
node along the chain and repeating the send sequence. In thiscase, we can also update
the failed node’s ETX value for the destination sink by usinga value forETXnew that
is higher than any other ETX value that we have already seen. Possible values include
ETXHighest+ 1 or ETXHighest∗2, but again, experimental testing will also be needed to
resolve better values for this. We should now have an increased ETX (due to the updating
from the failure) and so another possible neighbour will probably be chosen instead.

For example, if a nodeA has a message for sinkSand it chooses nodeB as its next-
hop neighbour, butB is unable to forward the packet, thenB updates its ETX forS to a
much higher value, and bounces the message back toA. At this point,A will go through
the message-forwarding mechanism again, andB could potentially be chosen again, but
given thatB has just had its ETX forS significantly increased, it is likely that another
node will be chosen.

3.6 Implementation

So far, we have specified what we want to do, and some high-level details of how we will
implement these choices, but another important factor to consider is that in most WSN
systems there are existing other protocols that we must interact with.

Most existing WSN routing protocols [16, 54, 59] come in two forms: weak and
strong binding to the MAC layer - those that just treat the MACas a black box that will
send packets, and those that rely heavily on one particular MAC. The former methodol-
ogy is unsuitable for ExOR use as the uncertain delay betweenone packet transmission
and the next (due to MACs doing things like sleeping [24, 148]and letting other possible
parts of an application use the radio), and the latter would reduce the flexibility of ExOR
to interact with a variety of protocol stacks (which is a problem given the heterogeneity
of current WSN systems).

We will therefore use theλMAC extensions from Chapter 2, in order to provide a
suitable level of control, while still allowing compatibility with many different MAC
protocols.

3.6.1 Building ExOR

Using theλMAC extensions, we can now build generalised ExOR as follows. In all
cases, we assume that at startup we call sendTime() with the payload length of a reply
packet (1 byte for most choice functions) to get the valueReplyTime.

61

3.6. IMPLEMENTATION CHAPTER 3. ROUTING

Figure 3.5: ExOR time line example

ExOR Sending node:

1. Call requestBlock() with Time equal tosendTime(packet length)+ ReplyTime∗
neighbours(whereneighboursis equal to the number of neighbours listed in the
ExOR packet - see Section 3.3.2)

2. On startBlock, call send() with the packet that we want to send.

3. On endBlock(), perform whatever cleanup operations are associated with the used
choice function (e.g. for ExOR-Bcast, record which neighbours we now have ad-
ditionally managed to send the message to).

ExOR Receiving node:

1. On a receive() event, where the incoming packet is a message from a Sending node,
then record the sender node id
a) If invert is switched off for the message, and this node is in the neighbour list,
then setz to be our index in the neighbour list.
b) If invert is switched on for the message, and this node is not in the neighbour
list, pick a random value between 0 andn asz, wheren is the maximum number of
slots for the reply packet.
c) If neither a) nor b) apply, return 0 (go to sleep until endBlock).

2. If z> 0 then
set a ’reply packet’ timer forz∗ReplyTimems
else
send a reply to the sender with send()
returnn∗ReplyTime(wait for entire packet sequence time)

62

CHAPTER 3. ROUTING 3.6. IMPLEMENTATION

3. If a ’reply packet’ timer goes off, then send() a reply to the recorded sender node.

For all types of node, on a receive() event, where the incoming packet is from a Receiving
node, then apply the control function as appropriate for theExOR variant in question (see
Section 3.4.1), and return 0 (go to sleep until endBlock).

3.6.2 Building Guesswork

Guesswork (as we discussed in Section 3.5) requires a reliable broadcast mechanism
(ExOR-Bcast), and a method for reliably transmitting messages using ETX (ExOR-
ETX). We have shown how to build these, but there are a few remaining details of the
Guesswork use of these algorithms to be mentioned.

Namely, the choice of how many neighbours to have in a neighbour list. For ExOR-
Bcast, the answer is generally fixed - in our implementation,we stick to a maximum
of 5 neighbours - more would make information spread faster,but as longer messages
tend to have a greater probability of failure (due to interference from other nodes, and
effects like the hidden-terminal problem (Section 2.1)) this appears to be a good value.
Also, because we actually want to talk to everyone in ExOR-Bcast, talking to too many
neighbours is less of an issue. Additionally, as ExOR-Bcastis generally only used by
Guesswork during application setup, optimisations to thiswill have a minimal effect.

However, the choice of neighbours used by ExOR-ETX is more important - partly
because this variant is more often used, and partly because ExOR-ETX only actually
wants to talk to one neighbour and the others are only for redundancy. As excessive
redundancy is overhead, a good value for this is applicationspecific, but as we would
like the algorithm to work with a variety of applications, a method for automatically
deciding on this value is useful. One option is using the following algorithm:

1. Each node starts with a neighbour count value (e.g. 5), which is used to determine
how many neighbours are used in ExOR-ETX

2. A node keeps track of the last known ETX value for each of itsneighbours, and
every time an ExOR-ETX sequence is executed, it checks whichnode its cached
values for the neighbour ETXs would have chosen v.s. the actual winning node.

3. Every time the node guesses correctly, it decrements the neighbour count value
(down to a minimum of 2) and every time it gets it incorrect, itincrements the
neighbour count (possibly up to a maximum value e.g. 10)

The idea behind this is that if a node can correctly guess the correct node to send to next,
then the network is probably moving towards a stable configuration with stable links. If a
node guesses incorrectly, then it is probably worth expanding the neighbour list to check
against other nodes. The neighbour list in ExOR-ETX effectively represents a “candidate
node” and a list of backup options. Therefore, giving more backup options in a unstable
situation, and less in a stable scenario is a good idea. The limit of 2 neighbours as a
minimum ensures that there is always a backup neighbour, andavoids the node collapsing
towards the fixed route scenarios that Guesswork intends to avoid.

63

3.7. RESULTS CHAPTER 3. ROUTING

For the purposes of the simulation testing, we created a fixed-length neighbour list
and did not implement this extension.

3.7 Results

We proceeded to test Guesswork against other routing algorithms, in combination with a
series of different MAC protocols. We wished to test Guesswork against a TinyOS [49]
implementation (similarly to our MAC work in Chapter 2), buta dearth of comparable
routing protocols for TinyOS, as well as some remaining stability issues in our imple-
mentation of Guesswork for TinyOS limited what we could do.

Instead, we decided to stick to simulation. This also allowed for testing with more
nodes, as our testbed is currently limited to only 24 nodes. The simulation framework is
based upon Positif [72], but extended and altered to work with routing protocols rather
than localisation protocols. The MAC protocol implementation is taken from earlier
work on MAC protocols [24], which has been extended to interface with Positif to create
a unified simulation framework.

Parameter

Protocol Name Value

AODV “Hello” messages Disabled
Gossip Fanout 2 for 1st 5 hops

1 afterwards
TTL 20 hops

Guesswork Neighbour list size 5 (fixed, no adaption)
S-MAC Frame length 1000ms

Timeout 100ms
T-MAC Frame length 610ms

Timeout 15ms

Table 3.1: Protocol parameters

In each case, we have a simple routing test, consisting of a source transmitting a
packet every 10 seconds, until it has sent a total of 20 packets, and sending towards a sin-
gle sink. We also considered a number of other possible scenarios, but decided to stick
with only the simple scenario as it was the most applicable tomany sensor network appli-
cations (v.s. more complicated scenarios which would have posed significant difficulties
choosing a widely representative scenario).

We tested 3 different MAC protocols S-MAC [147], T-MAC [24],and a “simple, no
carrier-sense” MAC (to provide a baseline comparison). Theother routing algorithms be-
ing compared against are AODV [98] and Gossip (random walking with limited fanout).
The AODV implementation was ported from the existing implementation for the Glo-
MoSim [151] simulator. Given their lack of a sink-discoverymechanism, both AODV
and Gossip were informed of the address of the sink at the start of each test.

64

CHAPTER 3. ROUTING 3.7. RESULTS

56 nodes are present in each test, in a 50x50 area, with maximum radio range set at
14. The per-link reliability is set at 80% for all tests i.e. arandom 20% of all packets sent
by the nodes are discarded, in order to simulate imperfect links. Note that 80% per-link
reliability is a level that would be considered “good” by most algorithms that classify
links as good/bad.

Each simulation is run for 300s before termination, and eachresult is the average of
20 runs of the particular combination of routing protocol and MAC protocol. The other
parameters for the protocols are given in Table 3.1, but a couple are worth discussing
further - AODV has its “Hello” messages disabled, because they resulted in far too much
overhead for our simple WSN example, and Gossip reduces its fanout to 1 after 5 hops
as otherwise it ends up reducing to simple flooding and havingfar too large overheads.

We looked at two different evaluation metrics for the results: reliability (how many
of the source messages get to the sink) and cost (power used for transmission and re-
ception over all of the nodes in the experiment, using the listed costs for a typical node
transceiver [110]). The produced graphs for these metrics have been altered in a few
small ways for improved readability - some of the protocol names have been shortened
(“Gossip” has become “Goss”, “Guesswork” became “Guess” and the Simple MAC is
described as “Simp”) and the “Simple” power measurements have been clipped (due to
its lack of power management, the Simple MAC uses approximately an order of mag-
nitude more power than the other protocols, and so displaying it fully would reduce the
amount of usable information on the other protocols).

E
ne

rg
y

U
se

d
(jo

ul
es

)

0
18
36
54
72
90

108
126
144
162
180

A
O

D
V

/S
im

p

G
os

s/
S

im
p

G
ue

s/
S

im
p

A
O

D
V

/S
M

ac

G
os

s/
S

M
ac

G
ue

s/
S

M
ac

A
O

D
V

/T
M

ac

G
os

s/
T

M
ac

G
ue

s/
T

M
ac

(a) Energy Costs

%
 R

el
ia

bi
lit

y

0

10

20

30

40

50

60

70

80

90

100

A
O

D
V

/S
im

p

G
os

s/
S

im
p

G
ue

s/
S

im
p

A
O

D
V

/S
M

ac

G
os

s/
S

M
ac

G
ue

s/
S

M
ac

A
O

D
V

/T
M

ac

G
os

s/
T

M
ac

G
ue

s/
T

M
ac

(b) Reliablity

Figure 3.6: Simulation Results

A number of interesting results immediately appear from thegraphs. Firstly, looking
at Figure 3.6a, we can see that the overall cost of the messages is dominated by the choice

65

3.8. CONCLUSIONS CHAPTER 3. ROUTING

of MAC protocol - comparing differing routing protocols with the same MAC protocol
shows a slightly higher cost for Guesswork and a slightly lower cost for AODV, but the
difference is not significant. These results are consistentwith current theory regarding
such factors as idle listening (as noted in [48] and Section 2.1), and show that despite
the additional overhead of the multiple ACKs in Guesswork, it still represents a viable
alternative.

The advantage of Guesswork becomes immediately apparent when we turn to Fig-
ure 3.6b. Given that AODV depends on the reliability of a linkat route discovery time, it
performs badly when faced with links that are “reasonable”,and may not always succeed.
80% is a high enough per-link reliability to provide links that can be used for routing,
but low enough to cause enough failures to make otherwise viable connections be often
discarded. Using the “Simple” MAC (with its lack of carrier sense, and so hence much
greater packet drop rate) reduces AODV to unusable levels. Gossip, with its simpler
methodology, is able to get some results (the redundancy from fanout is a significant fac-
tor there), but only with a reliability of 40-45%. Guesswork, on the other hand, is able
to react to even low reliability levels and work around theseproblems, with end-to-end
reliability at 85%+, climbing to 95%+ with the carrier-sense capable MACs. We have
performed additional testing with Guesswork at lower reliability levels, and were able
to maintain successful source-to-sink routing with link reliability levels down to ˜30%,
without altering Guesswork in any way.

To further the goal of integration with existing protocol stacks, and to facilitate ad-
ditional testing, Guesswork is currently being implemented for TinyOS. The implemen-
tation is still being worked on (as we mentioned at the beginning of this section), but
preliminary results from using the TNOde platform indicatea RAM usage in the order
of 672 bytes (16.4% of total), and ROM usage of ˜10Kbytes (7.8% of total). This still
needs further optimisation work, but represents reasonable early work.

3.8 Conclusions

We set out to try and design a routing protocol that would workin an energy-efficient
way to provide reliable end-to-end routing without having true links between nodes. As
links were previously an implicit requirement of most routing protocols, and they were
being provided in an energy inefficient way for sensor networks as they were a flawed
abstraction of the underlying systems, a routing protocol that did not require true links
would be much better designed (from an abstraction point of view), but would require
rethinking on how to route data.

We therefore built Generalised ExOR, building an improved abstraction for working
with hop-by-hop connections without having any explicit requirements for links. To
further achieve these goals, we also built the Guesswork algorithm, built upon modified
ExOR, along with the use of ETX to implicitly acknowledge that reception rates for pairs
of nodes are not a simple yes/no question but a probability value. Despite its reliance on a
packet sequence not normally supported by MAC protocols (ExOR), we showed how to
integrate Guesswork with a range of MAC protocols by utilising theλMAC framework.

66

CHAPTER 3. ROUTING 3.8. CONCLUSIONS

We have created here a routing algorithm that performs reliable routing over significantly
unreliable links, and without significant additional energy costs v.s. existing unreliable
routing protocols, by using a routing primitive (ExOR) withimproved abstraction for
WSN platforms.

3.8.1 Future Work

We would also like to explore ways of implementing Guessworkon top of TDMA proto-
cols (which have very limited support at this point due to therequirement for being able
to allocate blocks of time during which a single node can bothsend and receive pack-
ets). More work also needs to be done with testing against both fixed/reliable networks
and mobile networks, as the current testing is against what is a fairly realistic middle
ground for WSN applications, but testing how well Guesswork performs v.s. protocols
designed for a particular niche in the search space of possible routing problems is of in-
terest, as Guesswork is designed to work well (high reliability and low cost) in a variety
of scenarios.

Another interesting consequence of unreliable broadcast connections between nodes
and the removal of a “link” as a viable abstraction is that theconcept of a “neighbour” of
a node is a much more fuzzy concept. Previously, a pair of nodes would be considered
neighbours if they had a communication link. However, now wehave a wide range of
nodes that could be considered “neighbours”, depending on how often a given destination
node will receive packets broadcast by a particular source node. A particular node’s set
of neighbours is no longer a classical set, but a Fuzzy Set [150], with membership criteria
according to reception rates for each “neighbour” node. Fuzzy Logic has already been
considered for use in sensor networks [41, 81], but the implications of fuzzy neighbour
sets have not yet been fully explored.

67

3.8. CONCLUSIONS CHAPTER 3. ROUTING

68

Chapter 4

Localisation

In this chapter: We challenge the concept of distance estimation between
nodes, define “probability maps” for distance estimates, and build a local-
isation protocol that can handle inaccurate ranging data using probability
maps.

Many possible applications have now been thought of for Wireless Sensor Networks
(WSNs), and a significant number of them rely on location information in order to per-
form their designated function. The main purpose of a WSN is information gathering,
and gathered data is only useful if you know what it applies to. For example, the data
“the temperature has gone up by 10 degrees” is not very useful, but the information “the
temperature has gone up by 10 degrees in room 3C” is a lot more interesting. Loca-
tion information gives us a context, which allows us to actually use our gathered data.
For example, monitoring room temperature can be used to control when to switch air-
conditioning systems on and off. When detailed location information is present it might
even be possible to personalise working conditions within ashared office (i.e. individual
settings per cubicle).

Location information is important in many domains, hence various approaches have
been proposed, of which some were even constructed and deployed on a large scale
(e.g. GPS). In other systems, GPS would be an option, but given the relative costs of
GPS units (which are comparable on their own to the costs for asensor node), the power
requirements, and the difficulty of using GPS indoors [76], sensor networks need new
solutions to the problem of localisation. Within the WSN community, specialised locali-
sation algorithms have been developed that address the problems associated with the lack
of infrastructure (i.e. external hardware existing in the the environment that can be used
to aid localisation) and the limited resources leading to incomplete and inaccurate infor-
mation. A survey of initial approaches is presented by Hightower and Borriello in [47],
and Langendoen and Reijers [72] studied a variety of algorithms in more detail.

Most of the content in this chapter has been published as “Refined Statistic-based Localisation for Ad-hoc
Sensor Networks” by Tom Parker and Koen Langendoen at the Globecom 2004 Wireless Ad Hoc and Sensor
Networks Workshop [1]

69

4.1. EXISTING LOCALISATION METHODS CHAPTER 4. LOCALISATION

With WSN localisation, some nodes may be referred to as “anchor” nodes, and others
may not. The difference is that anchor nodes have a reliable source of location informa-
tion, and non-anchor nodes do not. Many localisation techniques rely on anchors, but
others do not. So called “anchor-free” localisation systems rely on the idea of building
a local co-ordinate system based purely on the existing topology of the nodes, which
provides the nodes with a location within the local system. In practise however, that lo-
cation information would require further processing to integrate it with other co-ordinate
systems (e.g. latitude/longitude). In this chapter, we areconcentrating on anchor-based
rather than anchor-free localisation techniques.

A major problem with localisation techniques (both anchored and anchor-free) is
acquiring accurate range information between pairs of sensor nodes. This can be done in
a variety of ways, ranging from simple techniques like RadioSignal Strength Indication
(RSSI), time of flight data for various sensor types (e.g. ultrasound), to more complex
ideas like time of flight difference (which measures the difference between two incoming
signals travelling at different speeds). In each case, there is generally some error in the
ranging information, which localisation algorithms must be aware of and be able to work
with.

In this chapter we look at a number of the limitations with many of the existing pro-
posed localisation techniques, show how they are unlikely to work well with a number of
application scenarios, and present a refined approach. Thisapproach uses a combination
of a mobile anchor scenario for anchor information distribution, along with statistical
techniques for performing localisation with inaccurate range data. Simulations with our
improved approach have shown significant reductions (in theorder of magnitude range)
to the required processing for performing statistic-basedlocalisation over previous at-
tempts, as well as improving the generated location information in situations with non-
total anchor information coverage, making possible a widerrange of applications.

4.1 Existing localisation methods

In this section we will have a brief look at existing localisation algorithms, with an em-
phasis on their capabilities regarding the handling of inaccurate range information and
their ability to handle non-uniform anchor distributions,which occur in many mobile
anchor scenarios.

Langendoen and Reijers [72] studied three localisation algorithms that can handle a
low number of anchors (Euclidean, Hop-Terrain, Multilateration), and identified a com-
mon three-phase structure. First, information about the anchors is flooded through the
network to determine the (multi-hop) distances between anchors and nodes. Second,
each node calculates its position using the known positionsand estimated ranges of the
anchors, for example, by performing a lateration procedure(as with GPS systems). Third,
nodes refine their positions by exchanging their position estimates and using the one-hop
inter-node ranges. After these three stages, a subset of thenodes have location informa-
tion that is considered “good” (i.e. reliable).

70

CHAPTER 4. LOCALISATION 4.2. PROBLEMS

Euclidean [86] uses basic geometric reasoning (triangles) to progress distance infor-
mation from the anchors to the nodes in the network, and uses lateration to calculate the
position estimates; no refinement is included in the algorithm. Euclidean’s basic safety
measure against inaccurate range information is to discard“impossible” triangles gener-
ated in phase 1. Unfortunately, this happens quite often, leaving many nodes in phase 2
without enough information to calculate their position (distances to at least 3 anchors are
required). The end result is that Euclidean is only able to derive an accurate position for
a small fraction of the nodes in the network.

Hop-Terrain [86, 115] avoids the range error problem to a large extent by using only
topological information in phase 1. The distance to an anchor is determined by counting
the number of hops to it, and multiplying that by an average-hop distance. Next, the
node positions are estimated by means of a lateration procedure. In the refinement phase,
Hop-Terrain switches to using the measured (inaccurate) ranges to neighbouring nodes.
To avoid erroneous position estimates affecting neighbours too much, the refinement
phase uses confidence values derived from the lateration procedure (dilution of precision
and residue). Hop-terrain works well for a regular network topology in which nodes
are evenly distributed. This however is not the case for the majority of mobile anchor
scenarios, resulting in the algorithm becoming increasingly less accurate as the regularity
assumption starts to break down.

Multilateration [116] proceeds by summing the distances along each multi-hop path
in phase 1. To account for the accumulated inaccuracies it does not perform a lateration
procedure, but instead uses each distance to specify a bounding box centred around the
associated anchor, in which the node may be located. In phase2, these bounding boxes
are simply intersected and the position estimate is set to the centre of the intersection box,
followed by a refinement procedure in phase 3. Multilateration’s effectiveness with vary-
ing errors in range measurements will depend on the exact nature of the errors. If many
of the measured distances are larger than the true distances, then Multilateration should
be able to cope with the problem (as the true distance will still fall within the bounding
box). However, in general, ranges are likely to be both under- and over-estimated (our
current model treats both as equally likely), and Multilateration is less likely to be able
to cope with under-estimation, and so will result in possible location information being
discarded due to contradictions between ranges with varying errors.

4.2 Problems

The main problem with most existing localisation protocolsis their notion of distance
values between nodes. Most earlier work can be classified into three groups, depending
on their assumptions about distance values:

• Distance data assumed to be “perfect”

• Distance data assumed to be “approximate”

• Distance data assumed to be “worthless” (range-free techniques)

71

4.3. PROBABILITY MAPS CHAPTER 4. LOCALISATION

The motivation behind range-free techniques - that available distance data is worthless - is
partially correct, in that the current assumptions about distance data available on a sensor
node make it practically worthless, but discarding it entirely gives much worse results.
Additionally, most range-free techniques are dependant ona very even distribution of
nodes. In this sense, they are even more locality dependant than most sensor network
algorithms (we looked at locality dependance earlier in Section 1.2.3), and without very
careful deployment they will exhibit even further sub-optimal results.

We realised that the problem here was another example of an abstraction problem.
Specifically, all distance data available to sensor nodes isderived from other parts of
the stack, which provide particular output values that are assumed to have a many-to-
one (sometimes one-to-one, but the same issues occur) translation function to a distance
value. That abstraction away from the original output values to a single distance value
is the problem. Indeed, much simulation work (in which most localisation research is
currently done, due to the difficulties and expense of setting up a physical large-scale re-
peatable localisation scenario at this time) discards the notion of the underlying hardware
entirely, and simply provides a distance value (often with random errors added) directly
to the localisation algorithms. Practically all localisation algorithms that use distance
data in fact assume that a distance values feed is automagically available to them.

We decided to step back to the generalised notion of a “data source” - a piece of
hardware and/or software that provides data that would havepreviously been used for
distance calculations. This preserves the abstraction away from particular items of local-
isation hardware - making algorithms hardware-independant - while reducing the level of
data loss. Other terminology we used in our thinking about this problem is “local node”
- the WSN node that contains the “data source” and is attempting to determine distance
measurements to a “remote node”; and the notion of “relativelocation” i.e. the location
of the remote node relative to the local node.

4.3 Probability maps

An abstraction away from potentially many differing data sources is required, but a single
distance value removes far too much data. We needed a better notion of a data source,
that discards less information and preserves the critical differences between differing
localisation hardware. We settled on the notion of a multivariate continuous probability
distribution (a “map” of probabilities) for the true distance as our improved abstraction.
The idea is that any particular point in the probability space for a particular input value
from the data source represents the probability that the remote node is in fact located that
far away from the local node.

The simplest possible probability map for a data source is the earlier assumption that
it mapped to a single distance value. This is shown in Figure 4.1, and is known as a
degenerate distribuiton. In this case, the figure shows thatthe distance value derived
from the data source is 10.

A slightly more complicated example is in Figure 4.2, which shows a probability
distribution centered around 10, with a gaussian distribution. One way to read this figure

72

CHAPTER 4. LOCALISATION 4.3. PROBABILITY MAPS

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty
pr

ob
ab

ili
ty

0 2 4 6 8 10 12 14 16

distancedistance

Figure 4.1: Degenerate single-value probability distribution

0

0.05

0.1

0.15

0.2

0.25

0.3

pr
ob

ab
ili

ty
pr

ob
ab

ili
ty

0 2 4 6 8 10 12 14 16

distancedistance

Figure 4.2: Gaussian drop-off

-16
-12

-8
-4

 0
 4

 8
 12 -16

-12
-8

-4
 0

 4
 8

 12
 16

 0

 0.3

Figure 4.3: Gaussian drop-off expanded into 2-D space

73

4.3. PROBABILITY MAPS CHAPTER 4. LOCALISATION

is as “distance is probably 10, but there is a chance of some small variation around that
value”.

Both of these examples assume that the mapping between inputdata and distance is
the same no matter what the direction of the remote node is from the local node. In fact,
Figure 4.2 can be looked at a simplified version of Figure 4.3,where Figure 4.3 shows
the same gaussian drop-off centered around the distance value 10, but this time a full map
around the local node is shown. As opposed to the earlier models that provide a mapping
between distance and probability, a 2-D model of this natureprovides a mapping between
relative locations and probability. Notably, a relative location can be converted back into
a distance value, but not the other way around.

4.3.1 Model choice

All of the models we have shown so far are very simple examples. The models that
would be used on a node depend entirely on the hardware platform, both in terms of pro-
cessing/memory usage and dependance on other hardware. Larger models require more
processing and memory (and more power because of that), and the trade-off between the
gains of a better model v.s. the resources used must be evaluated for each application.
Additionally, if for example, orientation data is available, then a full mapping between
relative locations and probability values can be built. Otherwise, if no orientation data
is available, then only a distance to probability mapping can be used. Also, information
about the local environment and its effect on the radios may be available.

One problem with the use of models is that there is often a significant difference
between the probability model, and the actual probability of a remote node being in a
particular position given the provided data source value. This is due both to any static
effects that are not considered when building the model, which may include both details
like a complete model of the radio, orientation data from both local and remote nodes;
and what other nodes are doing that may interfere with the data source (e.g. also sending
a signal on the radio).

This difference becomes more dangerous as the probability values for any individ-
ual point increases, as in effect we would then be returning towards the trivial model of
Figure 4.1. Conversely, setting all values too low will cause there not to be a signifi-
cant distance between very unlikely points and very likely points, making later decisions
based on the models difficult.

We therefore recommend the use of relatively simple models,both because the trade-
off between increased complexity and increased processingcost tends to grow expo-
nentially; and because more complex models will tend to be trusted more than simple
models, which because of the factors not taken into account (especially regarding the
physical environment directly around the node, which is rarely a known factor on sensor
nodes), will tend to be a bad decision.

74

CHAPTER 4. LOCALISATION 4.4. REFINED STATISTICS

4.3.2 Working with models

In many cases for data sources (e.g. radios) the manufacturer of the component will pro-
vide information on expected patterns for the source (radiation patterns in the radio case),
but given variations in component manufacturing - especially with the cheap hardware
typical to sensor networks - local calibration may help to improve data models. White-
house and Culler [141], as well as Balzano and Nowak [11] looked at the issues around
calibrating data models, and what could be done to improve data models on a per-node
basis.

Statistic-based Localisation [121] was the first work with probability models and
localisation. Sichitiu and Ramadurai only looked at RSSI and did not examine the pos-
sibility of other models, but other error models could have been potentially used with
their algorithms. Their core idea was that given a series of probability maps for anchor
nodes, these models can be combined to calculate a larger probability map, and then find
an estimated location for a node based on this map. Figure 4.4shows a visualisation of
an example map, and Algorithm 1 has more details about how they generated maps.

Statistic-based localisation has three main problems however:

• Knowledge of the complete area in which nodes will be deployed is needed to
create the probability maps.

• The large amount of computation required to create a complete map (both for gen-
eration of all the points that make a single map, and to merge all the points from
multiple maps together), increasing as the total area in which nodes are deployed
gets larger.

• All nodes need to be at one-hop distances from the anchors (achieved in [121] by
using a moving anchor with a very dense path). This is required because of a lack
of a method for distributing anchor information received byone node to another,
and so only anchor nodes can send their distance information.

4.4 Refined Statistics

The core approach of Statistic-based Localisation was good, but it was massively ineffi-
cient (both in terms of processing and memory requirements)and would not work with-
out dense anchor node deployments. We made a number of changes to Statistic-based
Localisation, which significantly improves the basic algorithm, making it a more useful
algorithm for applications with limited resources (i.e. WSNs). We call the improved al-
gorithm Refined Statistics-based Localisation (or RSL for short). In this section, and in
Algorithm 2, we detail the improved algorithm that we used inour experiments.

Simulations with our refined approach have shown significantreductions (in the or-
der of magnitude range) to the required processing for performing statistical localisation
over the earlier work, as well as improving the generated location information in sit-
uations with non-total anchor information coverage, making possible a wider range of
applications.

75

4.4. REFINED STATISTICS CHAPTER 4. LOCALISATION

P
ro

ba
bi

lit
y

 0 10 20 30 40 50 60 70 80 90 100 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

Figure 4.4: Visualisation of a complete local probability map

Algorithm 1 Statistic-based localisation [121]
1. Initially, the local probability “map” is set to a constant value across the entire

sensor grid, as all locations are considered to be equally likely at the start of the
algorithm.
PosEst(x,y) = c ∀(x,y) ∈ [(xmin,xmax)× (ymin,ymax)]

2. Incoming anchor information is processed as follows:

(a) The incoming anchor location is used to create a “constraint” function on the
possible locations of the node
PDFrssi≡ N∼ (EstimatedDistanceanchor,RadioRangingVariance)
Constraint(x,y) = PDFrssi(distance((x,y),(xanchor,yanchor)))
∀(x,y) ∈ [(xmin,xmax)× (ymin,ymax)]

(b) The node applies Bayesian inference to its current map togenerate an im-
proved map
NewPosEst(x,y) = OldPosEst(x,y)×Constraint(x,y)

∑xmax
xmin ∑ymax

ymin OldPosEst(x,y)×Constraint(x,y)

∀(x,y) ∈ [(xmin,xmax)× (ymin,ymax)]

3. Finally, the weighted average of all of the data in the map is used to calculate the
estimated position of this node
(x̂, ŷ) = (∑xmax

xmin ∑ymax
ymin

x×PosEst(x,y),∑xmax
xmin ∑ymax

ymin
y×PosEst(x,y))

76

CHAPTER 4. LOCALISATION 4.4. REFINED STATISTICS

Algorithm 2 Refined Statistic-based localisation
Abbreviations used here:
TL = Top-Left corner of a bounding box, BR = Bottom-Right corner of a bounding box,
R = Radio Range of the nodes. We assume that the x-axis goes from negative to positive
in a left-to-right direction, and that the y-axis goes from negative to positive in the top-
to-bottom direction.

1. Initially, the bounding box for a node is set to[(−∞,∞)× (−∞,∞)].

2. As (pseudo-)anchor information comes in, the bounding box for the local node is
intersected with the existing bounding box (see Figure 4.5 for examples of bounding
boxes, including a diagram of this step in Figure 4.5b)
NewBox(TL,BR) =
[(Max(AnchorTLx−R,OldBoxTLx), Max(AnchorTLy−R,OldBoxTLy))×
(Min(AnchorBRx +R,OldBoxBRx), Min(AnchorBRy +R,OldBoxBRy))]

3. Once information from at least two (pseudo-)anchors havebeen received, and the
minimum waiting period since the last incoming anchor has passed, then initialise the
local map to a constant value
PosEst(x,y) = c ∀(x,y) ∈ BoundingBox
and then each of the (pseudo-)anchors that the nodes has received is processed as
follows:

(a) The incoming anchor information is used to create a “constraint” function on
the possible locations of the node (wherePDF is a function outputting the prob-
ability map value for a particular distance)
Constraint(x,y) = PDF(distance((x,y),(xanchor,yanchor)))
∀(x,y) ∈ BoundingBox

(b) The node then multiplies each value in the map by the constraint function to
generate an improved map
NewPosEst(x,y) =OldPosEst(x,y)×Constraint(x,y) ∀(x,y)∈BoundingBox

4. The location on the map with the highest probability is determined (this is the most-
likely location for this node)
(x̂, ŷ) = maxarg{PosEst(x,y) |(x,y) ∈ BoundingBox}

5. Finally, the map is normalised to provide an externally-usable probability value

NormConstant= ∑BoundingBoxBRx
BoundingBoxTLx

∑
BoundingBoxBRy
BoundingBoxTLy

PosEst(x,y)

FinalPosEst(x,y) = PosEst(x,y)/NormConstant ∀(x,y) ∈ BoundingBox
(this works because the bounding box always has the propertythat the probability that
the current node is within the bounding box is 1)

If a node receives more (psuedo-)anchor data later on, then the map from step 3 can be re-
used, adding only the new anchors since the last time the algorithm was run. Alternately,
if the memory of the local node is limited, then the map can be discarded entirely, and
the entire set of calculations needs to be re-run for each new(pseudo-)anchor.

77

4.4. REFINED STATISTICS CHAPTER 4. LOCALISATION

4.4.1 Bounding boxes

If a node has received a position estimate from an anchor thenit knows it is in radio
contact with that anchor, and so therefore it must be within radio range of that anchor.
So, we can limit the space of possible locations for that nodeto a circle centred on the
anchor’s location with radius equal to the radio range. For practical purposes (significant
speed improvements) we use a bounding box rather than a circle, with each side equal to
2*radio range, and the anchor in the centre (Figure 4.5a). (The basic concept of bounding
boxes has previously been analysed in [122], but not in combination with statistic-based
localisation.) This results in a larger region, but we stillhave the guarantee that all
feasible locations for the node are located within the box, while keeping the box size to a
minimum. This currently assumes a circular radio model, butfor radios with non-circular
transmission spaces, we can calculate the minimum box that contains the entire possible
transmission space, and so be still able to use this methodology.

(a) (b)

(c)

Figure 4.5: Bounding Boxes

When a node receives location information from an additionalanchor, it knows that
it must be within the bounding boxes for both anchors. Therefore, we can reduce the
bounding box for the node to the intersection of both of theseboxes (Figure 4.5b, and
Algorithm 2, step 2). A bounding box is defined by two points, its Top-Left and Bottom-

78

CHAPTER 4. LOCALISATION 4.4. REFINED STATISTICS

Right corners. Note that the probability visualisation in Figure 4.6 only shows a partial
grid (as opposed to Figure 4.4 which shows basic Statistic-based localisation, and uses a
complete grid). This partial grid is the section of the complete sensor grid corresponding
to the bounding box for this particular node.

Experimental results for testing the reduction in the size of the calculated sensor
grid, show an average reduction in the number of required calculations by a factor of
8 when we use bounding boxes. Also, with the additional optimisation of not doing
calculations for the nodes with the largest bounding boxes,we could improve this result
further. For example, by discarding nodes with bounding boxes where(width∗height) >
(3∗RadioRange) on the basis that they have too little data to be usable, we reduce the
overall calculation load by an additional factor of 3.

4.4.2 Thresholded broadcast

To get around the problem of needing anchors within one-hop of the sensor nodes, we
perform a limited broadcast of calculated node location information - limited by only
broadcasting if we exceed a minimum probability threshold for the quality of our location
information (currently set in our implementation to 0.003). The node effectively acts as
an additional “pseudo” anchor, but with two changes from normal anchors.

Firstly, location information is broadcast with a confidence value (gained from the
local probability map), and the error model used by nodes receiving this information will
be scaled accordingly, as shown in Algorithm 2, step 3a with the use ofConfidenceanchor

in the generation ofPDFrssi. This confidence value is a weighting value for use in the
statistical models i.e. a node with confidence 1.0 (an anchornode) will have twice the
effect of a node with confidence 0.5.

Secondly, with pseudo anchors, the bounding box is broadcast as well, and the box
used by receiving nodes is not just a square centred on the node (as for anchors), but
a rectangle equal to the bounding box size, plus radio range in each direction (Figure
4.5c). This is because the bounding box contains all locations the pseudo anchor could
possibly be in, and so increasing it by the radio range creates a box in which nodes that
can hear this pseudo anchor could possibly be located. This box will be larger than a
box generated from an anchor node, because the location information is less accurate.
However, this larger box may still be useful to other nodes inreducing their bounding
boxes, and hence reducing the amount of computation that they need to perform.

Nodes that have position information, but do not exceed the probability threshold are
considered “bad”. These nodes have some position information, but either the informa-
tion is insufficient, or it is of too low a quality to be fully usable. These do not broadcast
their location information to other nodes.

One additional scenario that uses pseudo-anchors is when wehave location informa-
tion from another system (e.g. GPS) and this data is inaccurate. We can then treat this
inaccurate anchor as a pseudo-anchor, with an appropriate confidence value and bound-
ing box depending on the incoming data. Refined statistic-based localisation does not
actually specifically require accurate anchors, but simplysome sources of initial locali-
sation data to initialise the algorithm.

79

4.4. REFINED STATISTICS CHAPTER 4. LOCALISATION

In our experiments comparing this multi-hop method with theoriginal single-hop
method, we see a similar average error in the locations of thegood nodes, but a 38%
average increase in the number of good nodes.

4.4.3 Symmetry problem

There are a number of situations where we will have multiple points that have equally
high probabilities (or certainly very similar, and within the bounds of statistical error).
One of the most instances of this problem is when we have multiple anchors in a straight
line. As the distributions of the anchor data cross over equally on both sides of the line, a
pair of possible good points will be created, each one equally far away from the line, but
on opposite sides. Figure 4.6 is an example of this, showing the local probability map for
a node with this particular problem.

P
ro

ba
bi

lit
y

(Pseudo-)anchor
Possible location

True location

 65
 70

 75
 80

 85
 90

 95 35

 40

 45

 50

 55

 60

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

Figure 4.6: Equal points

The broadcasting of derived-anchor data from nodes with good location data reduces
the symmetry problem, as this creates additional pseudo-anchors, allowing the possible
locations for the node to be “pulled” in the direction of the correct point. However, in the
event that the paths of the anchors is a straight line, and that there are insufficient “good”
nodes in the local area to broadcast pseudo-anchor information, then the problem still
occurs. One solution is to avoid deploying nodes in a straight line - random distribution
is best, but curved deployment paths will also help a lot.

A node can determine whether or not it is likely to have multiple possible positions,
based on its local probability map, by calculating the average of all of the anchor loca-
tions the node knows about (weighted according to their confidence values), and seeing
how much each anchor’s location differs from their average location in each separate
axis. This allows the node to check whether its known anchorsare mostly arranged along
a straight line, or whether they have a more varied path. If there is a significantly greater

80

CHAPTER 4. LOCALISATION 4.4. REFINED STATISTICS

total difference from the average point in one axis than another (indicating a mostly
straight path), then the node will also test the other possible good points. These can be
found by taking the averaged anchor location, then looking at the points that are on the
opposite side of the average point from the calculated most-likely location for this node.
An average of the most-likely location and the other possible points (weighted according
to their individual confidences) becomes the node’s estimate of its true location.

If the sum of the confidences for the most-likely point and thebest of the other candi-
date points, divided by a scaling factor, is above the standard threshold for transmission
of the calculated location, then we transmit both locations. The scaling factor varies ac-
cording to the degree of difference between the two confidences i.e. how good the second
confidence is compared to the first.

ScalingFactor= 2× confidence(Best)+confidence(SecondBest)
confidence(Best)

If the second point is similarly confident to the first, then the scaling factor will be
proportionally greater, but it always satisfies the condition 2≤ ScalingFactor≤ 4.

If the node decides to transmit its current guesses, then theconfidences for both points
are transmitted, and the node is treated as two separate nodes by its neighbours, one at
each of the two possible points, but each with a reduced confidence (compared to the
calculated confidence for the point).

4.4.4 Heavy data-processing

One downside of statistic-based methods is the amount of data processing required to
calculate the local maps. The bounding boxes reduce this significantly (a factor of 8),
by eliminating many regions that this node can not be locatedat. For best results, there
should be a waiting period for a short amount of time (e.g. 5 seconds) after the last piece
of anchor information has been received, before calculating the local map, in order to
work with the smallest possible bounding box. This will slowdown the calculation of
this node’s location, but given that it is necessary to re-calculate the data if we receive
another anchor, this can reduce the amount of redundant calculations significantly. The
waiting period should be calibrated such that if we have not seen a new anchor for that
amount of time, then we are unlikely to receive more anchor information in the near
future. Good values for this would be at least as large as the interval between broadcasts
of the mobile anchor.

The energy costs associated with statistic-based localisation are higher than for most
localisation techniques, due to the large number of probability calculations required (Lat-
eration being a notable exception, due to the use of matrix multiplications), but this
additional cost is in most cases a one-off initialisation cost. Simulation results show
an increase in processing time for refined statistic-based localisation over deterministic
techniques [86, 115, 116] by approximately a factor of two; an increase from ˜5 to ˜10
seconds, results will vary depending on bounding box size and CPU, this is for a typical
node CPU [133] and an average bounding box taken from experimental testing. This or-
der of processing time is not an unacceptable start-up cost for a long running application,

81

4.5. MOBILE ANCHORS CHAPTER 4. LOCALISATION

given the significant improvements in the derived location information. The probability
calculations can also be performed by many nodes at the same time without additional
costs, as opposed to other localisation techniques requiring large numbers of radio mes-
sages (which would exhibit increased numbers of packet collisions if several nodes are
transmitting radio messages at the same time). Refined Statistic-based localisation has
been deliberately optimised towards reduced radio traffic with this aim in mind.

An additional optimisation that could reduce the data processing cost is the alteration
of the grid size of the calculations. When the probabilities for a region are calculated,
this is done at discrete intervals, resulting in a grid of probabilities for a region. The
distance between points in the current implementation is fixed in size, but this could be
varied on a per-node basis, depending on the size of the bounding box. Larger bounding
boxes would increase the point distance, and smaller boxes would decrease it, creating
an approximately equal point count (and therefore processing time) for all nodes, while
allowing nodes with small bounding boxes to have more accurate estimates than they
achieve currently. The point count could also be varied at the application level, to allow
for application-specific accuracy requirements.

Refined Statistic-based localisation could also be furtherimproved by the limiting
of Step 5 in Algorithm 2. Currently, we generate the normalised map for all locations
in a node’s bounding box. However, we then only use a small subset of this data. An
additional reduction in processing time could be gained by only calculating normalised
probabilities for the most-likely location and for the additional possible locations needed
for the solving of the symmetry problem (Section 4.4.3).

4.5 Mobile anchors

RSL will work with only a small set of anchors, but the resultsbecome much better
with greater numbers of anchors. Therefore, in this sectionwe look again at how initial
anchor information can be provided to an ad-hoc sensor network, given typical resources
for target application scenarios.

4.5.1 Anchor distribution

Most methods for providing location information to a sensornetwork start with adding
additional localisation hardware (e.g. GPS) to a small percentage of the nodes in the
target area. These anchor nodes will initially gather accurate location information on
their own, and then transmit this information to their neighbouring nodes. This approach
has a number of major faults:

• Most localisation algorithms based on “spread anchor” scenarios rely on the an-
chors being evenly distributed across the sensor network. Unless special care is
taken to make sure of this, or a very large percentage of the nodes are anchors,
then this is unlikely. Given a small anchor percentage (as inmost proposed appli-
cations), there is a high probability that there will be regions of the sensor grid that

82

CHAPTER 4. LOCALISATION 4.5. MOBILE ANCHORS

have insufficient anchors, leading to problems in attempting to localise nodes in
those regions.

• Anchor nodes are generally more expensive (because of the additional hardware
requirements), which creates a difficult decision regarding the balancing of the
application requirements between having improved accuracy (lots of anchors) and
reducing the overall cost of the network (few anchors).

• The additional anchor hardware is often only useful during the initial phase of the
network setup, and is then mostly surplus to requirements. An anchor node may
also have a reduced operational lifespan due to the power drains of the localisation
hardware.

There have been some attempts to fix these problems (AdaptiveBeacon Placement [17]
for example), and there are partial fixes, but a better approach is to look at other ways
that location information can be distributed rather than the use of static anchor nodes.

4.5.2 Mobile anchor scenarios

Mobile anchor scenarios [121] are an

Figure 4.7: Example mobile anchor scenario

alternate approach, resolving a number of
the problems with the spread anchor sce-
narios. This approach uses a single, large
anchor capable of moving along a path.
This large anchor could be carried by a
car or a person for example. The inten-
tion is that this larger anchor will have ef-
fectively unlimited power (i.e. can trans-
mit as many messages as needed) because
it is intended to be more easily accessible
than the individual sensors, and so replac-
ing the anchor node’s batteries is less of
a problem than replacing batteries in the sensor nodes.

As the mobile anchor moves, it broadcasts its location at regular intervals (either
every few seconds, or after it has moved a short distance fromits last broadcast location),
thus creating a series of “virtual” anchors, as in Figure 4.7. Each circle represents a
position where the mobile anchor has broadcast its current location.

4.5.3 Real-world applications

To see how mobile anchor scenarios map onto various applications, we looked at the
structure of these applications, and saw how we could betterutilise the already available
resources. The main area of interest regards the method for the distribution of the sensors.
A number of different methods have been proposed, varying from the manual placing of
individual nodes, through to the dropping of nodes from a plane. These methods can be

83

4.5. MOBILE ANCHORS CHAPTER 4. LOCALISATION

grouped into two categories depending on the distance from the object that is placing the
nodes to the location that the nodes are being placed.

The simplest scenarios are when the distance is less than thenodes’ radio range (ide-
ally much less). In this case, the placing object itself (be it a person or a car) is the
mobile anchor. This can be achieved by combining an anchor node with the placing ob-
ject (either carried by the person, or attached to the car). It can then broadcast its location
information as it places the nodes, thus providing a path that passes near all of the nodes.

More complicated are the situations where the nodes are far away from the placing
object, for example when dropping nodes from a plane (especially from a high altitude,
or when trees or other obstacles are likely to block radio signals from the placing object).
One solution to this problem is that the plane could also dropone or more small robots
fitted with localisation equipment, in addition to the sensor nodes. These robots could
travel along a semi-random path around the sensor grid (withconstraints to keep them
near the grid), providing location information to the sensor nodes as they move around.

4.5.4 Advantages

There are several main advantages of mobile anchor scenarios:

• Instead of many anchor nodes (and having to make the trade-offs regarding how
many) we have effectively many anchor nodes, but for the costof only a few anchor
nodes (one per placing object). The anchor infrastructure is therefore “there when
you need it, not when you don’t”. All of the sensor nodes should have similar
lifetimes, without the additional power drains that would occur if some of them
were also anchors for the network.

• In the complicated scenario with the use of mobile anchor robots, the cost of the
scenario does go up from what would be possible with more simple scenarios.
However, the robots could also be fitted with additional sensors (above and beyond
what would be fitted to normal nodes), so that once they have finished providing
location information to the network, they can be moved to locations where inter-
esting events are happening to gather more detailed information. The possibility
of very simple (and cheap!) sensor nodes coupled with largerrobot-mounted sen-
sor arrays would provide a cost effective methodology for detailed data gathering
without requiring every node to have a large sensor array.

• In the event that the initial anchor path is not sufficient to provide good location
information for all of the sensor nodes, we may (depending onthe application) be
able to do on-the-fly improvements in bad areas. The equivalent solution [17] for
standard anchor scenarios would involve placing additional anchor nodes, at addi-
tional cost, but with mobile anchors we can simply move the mobile anchor near
the inaccurately located nodes. These can be discovered using iterative location
techniques working from the closest known other nodes.

84

CHAPTER 4. LOCALISATION 4.6. RESULTS

4.6 Results

Using the Positif simulation framework for localisation algorithm testing [72], we have
performed a series of comparison tests between RSL, and three deterministic localisation
techniques (Euclidean [86], Hop-Terrain [115] and Multilateration [116]), using a mobile
anchor scenario in all cases, and with a variety of ranging errors between nodes.

In each case, all of the algorithms have been tested with the same set of data, and each
result is the average of 10 runs of the simulation with varying random-number seeds. The
ranging error is modelled as a Gaussian distribution, with the mean as the actual range,
and the range variance as a percentage of the radio range. Theinternal model of the
refined statistic algorithm in all cases is set to a Gaussian distribution with the mean
as the incoming range information, and the estimated range variance set to 20% of the
radio range. In all scenarios, there are 226 sensor nodes randomly placed, with a uniform
distribution, within a square area. The mobile anchor is modelled as a formation of 111
“virtual” anchors within this sensor grid. The grid has a size of 100x100, and the radio
range is set to 14 providing the nodes with an average connectivity of 19.

There are three different mobile anchor scenarios being considered here. The first is
a “square” formation, with a mobile anchor moving along a square path situated approx-
imately 1/5th of the sensor grid width from the edge of the grid at all times. The second
is a “cross” formation, testing what might happen with two separate mobile anchors, one
moving from the the top-left to bottom-right, and the other moving from bottom-left to
top-right. In both cases, the start points are situated 1/5th of the sensor grid width from
the edges of the grid. The straight lines of these two topologies have been deliberately
chosen to cause difficulties to RSL. The third topology is a “wobbly” square, taking the
square formation locations as a base, and then moving the anchors by a random amount
(maximum distance of 2, uniformly distributed) away from the initial location to provide
a less straight-line path.

Figures 4.8 (square), 4.10 (cross) and 4.12 (wobbly) are visualisations of the individ-
ual node locations for a set of example experiments that we have performed using RSL.
The nodes marked with a “•” are anchor nodes, the others are sensor nodes; the ones
marked with a “*” are good nodes, nodes marked with a “+” are bad nodes, and the “△”
nodes have no position data at all. Lines attached to nodes show the path from a node’s
true position to where it thinks it is. The longer the line, the less accurate the estimated
position. Note that, in general, RSL does a good job of classifying the nodes into good
and bad ones, but occasionally generates both false positives (good nodes with long lines)
and false negatives (bad nodes with short lines). These anomalies generally occur outside
the area directly covered by the mobile anchor. Since the node classification is largely
correct, applications should be able to exploit that knowledge to their advantage.

In figures 4.9, 4.11 and 4.13, we show the average accuracy of the good nodes for all
of the algorithms. For RSL, we also have bad nodes, so we also show the accuracy for
a weighted average of both good and bad nodes. Figures 4.14, 4.15 and 4.16 show the
average percentages of positioned nodes in each of these cases. Note the poor coverage
(generally less than 50% of the nodes obtain a position estimate) for the square and cross

85

4.7. RELATED WORK CHAPTER 4. LOCALISATION

topologies, which shows the problems induced by non-uniform anchor distributions in
combination with the symmetry problem for straight line topologies.

In most cases RSL has the lowest percentage error in its ”good” positions. Euclidean
only outperforms it under ideal circumstances (i.e. no range errors); in all other cases (er-
ror variance> 5%) RSL provides (much) more accurate position estimates. In general,
localisation algorithms can trade-off accuracy for coverage [72]. RSL, however, com-
bines high accuracy with reasonable coverage. For low errorvariances, RSL has similar
numbers of good nodes as the Hop-Terrain and Multilateration algorithms, only at higher
values RSL starts to classify more nodes as being bad. The combination of the RSL good
and bad nodes however, gives a comparable level of error to the other algorithms, but
with up to a doubled number of positioned nodes.

The “square” topology was chosen as a typical example of a simple mobile anchor
scenario, which could have been implemented by for example amobile node attached
to a car driving around a square-shaped building. These x/y-axis aligned paths can be
detected by the equal pairs heuristic (Section 4.4.3) in some cases and compensated for
accordingly. Despite the problems still occurring due to the straight paths, RSL is still
capable of getting reasonable results.

The “cross” topology was designed to attempt to break the current implementation
of RSL, as the equal pairs heuristic does not work as well withdiagonal paths. However,
although RSL has less accurate results for the cross topology, all of the other algorithms
also do badly as well. We would therefore not recommend the use of the “cross” topology
for use in mobile anchor applications.

The “wobbly” square topology is an example of a topology thatshould be easier for
the localisation algorithms, as the significantly lower errors for this topology shows. One
example case where we would expect to see this sort of topology is where the mobile
anchor is attached to a soldier patrolling the perimeter of abase. The significantly better
results with this topology over the straight-line topologies is why it is recommended to
avoid straight lines with the mobile anchor paths.

In all of the experiments the internal model of RSL has been set to a Gaussian distri-
bution with variance as 20% of the radio range. The results for that particular variance
of the actual errors are not much better than for other variances of that magnitude. Note
therefore, that we can get good results even when the actual ranging information model
is significantly different from the internal model of the algorithm. It is important to try
and get the internal model as similar as possible to the actual model, but as these results
show, good data can be acquired even if the internal model is inaccurate.

4.7 Related Work

As previously mentioned, Sichitiu and Ramadurai [121] did the initial work with statistic-
based localisation and mobile beacons. They however required an order of magnitude
more processing time, plus a far higher anchor coverage density to achieve similar re-
sults to refined statistic-based localisation. Sun and Guo [130] also looked at probability
models, but without exploring the sources of such models in much depth.

86

CHAPTER 4. LOCALISATION 4.7. RELATED WORK

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Figure 4.8: Square topology, 20% range error variance

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

A
ve

ra
ge

 e
rr

or
 (

pe
rc

en
ta

ge
 o

f r
ad

io
 r

an
ge

)

Range error variance (percentage of radio range)

Euclidean
Hop-Terrain

Multilateration
Statistic (good)

Statistic (good+bad)

Figure 4.9: Square topology accuracy

87

4.7. RELATED WORK CHAPTER 4. LOCALISATION

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Figure 4.10: Cross topology, 20% range error variance

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

A
ve

ra
ge

 e
rr

or
 (

pe
rc

en
ta

ge
 o

f r
ad

io
 r

an
ge

)

Range error variance (percentage of radio range)

Euclidean
Hop-Terrain

Multilateration
Statistic (good)

Statistic (good+bad)

Figure 4.11: Cross topology accuracy

88

CHAPTER 4. LOCALISATION 4.7. RELATED WORK

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Figure 4.12: ”Wobbly” square topology, 20% range error variance

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

A
ve

ra
ge

 e
rr

or
 (

pe
rc

en
ta

ge
 o

f r
ad

io
 r

an
ge

)

Range error variance (percentage of radio range)

Euclidean
Hop-Terrain

Multilateration
Statistic (good)

Statistic (good+bad)

Figure 4.13: “Wobbly” square topology accuracy

89

4.7. RELATED WORK CHAPTER 4. LOCALISATION

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30P
os

iti
on

ed
 n

od
es

 (
pe

rc
en

ta
ge

 o
f n

on
-a

nc
ho

r
no

de
s)

Range error variance (percentage of radio range)

Euclidean
Hop-Terrain

Multilateration
Statistic (good)

Statistic (good+bad)

Figure 4.14: Square topology coverage

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30P
os

iti
on

ed
 n

od
es

 (
pe

rc
en

ta
ge

 o
f n

on
-a

nc
ho

r
no

de
s)

Range error variance (percentage of radio range)

Euclidean
Hop-Terrain

Multilateration
Statistic (good)

Statistic (good+bad)

Figure 4.15: Cross topology coverage

90

CHAPTER 4. LOCALISATION 4.7. RELATED WORK

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30P
os

iti
on

ed
 n

od
es

 (
pe

rc
en

ta
ge

 o
f n

on
-a

nc
ho

r
no

de
s)

Range error variance (percentage of radio range)

Euclidean
Hop-Terrain

Multilateration
Statistic (good)

Statistic (good+bad)

Figure 4.16: “Wobbly” square topology coverage

Ssu et al. [127] also worked with mobile anchor points, but their scheme was heav-
ily dependant on circular radio ranges, which is often not the case with sensor node
radios [153].

Galstyan et al. [36] did some earlier work using bounding boxes, with additional op-
timisations in the area of “negative information” i.e. if two nodes can not communicate
with each other, they are assumed to be out of range with each other. Bounding boxes
have the assumption that a node is certain to be somewhere within them, but given the
significant likelihood of bad links (two nodes that are in radio range but cannot commu-
nicate) in the real world due to a variety of possible problems (e.g. objects in the way),
this will cease to be the case if we use negative information.Results from [?] indicate
that even without such obstacles, bad links still occur in a significant percentage of cases.

Doherty et al. [28] proposed a method for constraint-based localisation, including
work with bounding regions. However, their techniques required several orders of mag-
nitude more processing power than the methods proposed hereand so they used cen-
tralised computation of their algorithm - rendering it unsuitable for large sensor networks
due to the overheads of exchanging information with a central node. Their solution to the
centralisation problem using a hierarchical distributionof the problem would still require
much larger energy/computing resources than present on current node hardware, but now
the additional capacity would have to be evenly spread across the network, reducing the
feasibility of this technique even further. They also did not achieve significantly better
results than the distributed algorithms demonstrated in this chapter.

91

4.8. CONCLUSIONS CHAPTER 4. LOCALISATION

4.8 Conclusions

We presented here an approach that can provide good locationinformation, even with
non-uniform anchor distributions and considerable inaccuracies in the incoming ranging
data. We were able to do this by re-examining the abstractionof distance between nodes
as the core building block for building localisation algorithms, and moving to probabil-
ity density functions instead of single values as the abstraction for distance estimation.
Probability density functions provide a better way to abstract away from the raw sensor
data used to generate distance-related information, rather than the simplified approach
with simple distance estimates.

Refined Statistic-based Localisation provides a good solution to the problem of local-
isation even in small, resource-limited sensor networks. We showed that we can calculate
accurate position data for a high percentage of the sensor nodes in a network, improving
the quantity of positioned nodes in sensor networks both versus simpler statistic-based
methods and deterministic localisation methods.

All of this has been tested using mobile anchor scenarios, which we have shown to be
a realistic and usable method for the distribution of anchordata, as well as a cost-effective
one - both in terms of energy costs for the sensor nodes of the network (as the mobile
anchors are separate from the deployed nodes), and in terms of the necessary hardware
required to create the sensor network. Getting rid of the errors in sensor measurements is
hard to do well, but that is the price of gathering data from the real world. With statistical
approaches, we have shown that it is possible to work around these errors, and derive
good location information. Statistical approaches are somewhat more computationally
expensive, but given the significant improvements in the location information, and that
the computational expense results in a reduced level of required radio traffic during the
localisation process (which increases the capability of other nearby nodes to do radio-
dependent work efficiently during the localisation process), we believe that the trade-offs
are worth it.

4.8.1 Future Work

In the future, we hope to expand on our work here to attempt to further improve the
location information that can be gathered, by integrating more accurate models of various
ranging sensors, and also testing to see whether a combined model from several sensors
may improve accuracy. More work also still needs to be done onmaking it easy to build
localisation algorithms on standard node hardware platforms, as very little work is done
with real hardware.

Recent work [60] has shown that better bounding boxes can be derived by altering the
transmission power to provide multiple options for the sizeof a box, and so this would
help to reduce the size of the bounding boxes.

92

Chapter 5

Motion

In this chapter:We further re-examine the abstractions developed in Chap-
ter 4 (probability maps and bounding boxes), look at differential probabil-
ity maps, and build new protocols that can do motion detection both with
(Portmanteau) and without anchor nodes (Adumbrate), but without requir-
ing motion-detection hardware.

As we discussed in Chapter 4, many possible applications have now been thought of for
Wireless Sensor Networks (WSNs), and a significant number of them rely on location
information in order to perform their designated function.This is because the main
purpose of a WSN is information gathering, and gathered data is only useful if you know
what it applies to.

The range of viable localisation techniques depends heavily on what node hardware
is available. At one end of the scale, if every node has accelerometers, GPS, and an array
of accurate ultrasound sensors, then localisation is quitesimple. Alternately, nodes can
have no hardware designed for motion detection or localisation at all, and only RSSI data
from a radio to give limited ranging information. Unfortunately, most node hardware is
of the latter type. Additionally, most existing work [17, 47, 86, 115, 116, 121] generally
deals with static networks, and detecting when a network is no longer static with minimal
additional hardware requirements would be of considerableuse.

With WSN localisation, nodes with additional hardware are referred to as “anchor”
nodes i.e. they have a reliable source of information about their location. Many localisa-
tion techniques rely on anchors, and on the assumption that anchor nodes are uniformly
distributed among a uniform distribution of non-anchor nodes. Given the small percent-
age (<10% in most scenarios currently postulated) of anchors within a large collection
of non-anchors, and the aim that sensor networks are eventually intended to be easy to
distribute for non-computer scientists, this assumption can not be relied on for many
application scenarios.

Most of the content in this chapter has been published as “Adumbrate: Motion Detection with Unreliable
Range Data” by Tom Parker and Koen Langendoen at the Fourth International Conference on Networked
Sensing Systems (INSS 2007) [3]

93

5.1. DETECTING MOTION CHAPTER 5. MOTION

One piece of information that would be very useful is motion information - if a node
has not moved between its initial deployment and the time it is fully localised, then we
know that all data gathered up until that point was from a particular location. If it has
moved, information on the approximate amount of motion may help decide whether the
data can still be treated as located at a particular point (with a particular level of location
accuracy). We therefore need to be able to detect motion evenwithout anchors.

Another major problem within WSN localisation techniques isacquiring accurate
range information between pairs of sensor nodes. There is generally some error in the
ranging information (as we noted and discussed in Chapter 4), which motion detection
algorithms must be aware of and be able to work with.

5.1 Detecting motion

Despite the potential usefulness of motion detection for sensor networks, especially given
their locality dependance (see Section 1.2.3), it has been aneglected topic. Most work
with moving nodes tends to focus on anchor nodes (e.g. Mobileanchor scenarios from
Section 4.5), or with robots [94, 113, 135]. In both cases, ittends to be assumed that
the moving nodes/robots either have an external source of localisation data (e.g. GPS),
and therefore can calculate motion information where needed; or that they have motion
sensors available to them (e.g. an accelerometer). Unfortunately this is not true for most
typical sensor nodes, and so this limits what can be done for motion detection using
techniques that rely on this extra hardware being present onall nodes. This creates a
percieved difficulty in doing motion detection on typical sensor nodes, to the extent that
it is not even considered as an option, despite the potentialuses of such data.

We therefore decided to further explore what could be done inthe area of motion
detection without changing the hardware profile for standard WSN applications, as we
felt that the standard reasoning regarding what is available to a typical sensor node was
flawed, and that there were possiblities for doing motion detection by taking apart the
abstractions that describe standard thinking about node hardware.

In this chapter we focus on two scenarios for motion detection - what can be done
with just basic nodes (no localisation hardware; just RSSI); and what can be done with
minimal quantities of additional hardware on a limited set of nodes (anchor nodes). The
first scenario is in line with our goals of zero changes, but the second requires additional
hardware on a subset of the nodes. As this additional hardware was already part of the
requirements for Localisation protocols, we felt that exploiting this hardware without
adding further hardware requirements was an acceptable compromise.

With only basic nodes we are limited as to what we can do, but some information can
still be gathered. In the situation with a limited set of anchor nodes, we still may well
have the same problem as with just basic nodes, as with low percentages of anchor nodes,
a given basic node may well have no communication with anchornodes. One solution to
the lack of additional anchor nodes is that the anchors may well be mobile (Section 4.5),
and so even if a basic node has no current communication with anchor nodes, gathering
some information before communication is established withanchor nodes may help de-

94

CHAPTER 5. MOTION 5.2. MORE PROBABILITY MAPS

termine earlier location data. Anchor-less situations arelikely in the early stages of some
mobile anchor scenarios, especially when the placing object is far away from the loca-
tions where the nodes are being placed, and so we need to be able to do motion detection
both with and without anchors.

Our particular focus here is on allowing smarter decisions in limited motion scenarios
for localisation algorithms designed for static networks,and limiting the problems that
moving non-anchor nodes can cause to stateful localisationtechniques. In general, state-
ful localisation tends to break if motion occurs, but by being aware of motion, protocols
can discard/revise localisation state to avoid this happening.

Unfortunately, most methods for detecting movement of nodes can not tell the dif-
ference between moving nodes and malicious nodes (nodes that are sending bad data).
Malicious nodes are hard to deal with - with a large enough amount of effort and/or
nodes, a malicious intruder can potentially break an entirenetwork. However, for most
non-military sensor network scenarios, the chances of a malicious intruder are very low,
whereas motion is likely. We are therefore going to concentrate our efforts on detecting
motion, and leave the problem of dealing with malicious intruders for more advanced
systems.

5.2 More Probability maps

Motion is intrinsically linked to localisation, as if a nodemoves it changes from being
at one location to being at another. Therefore, our first intuition was that looking at data
from localisation techniques (Chapter 4) would give us someinsight as to how to do
motion detection on sensor nodes.

In Section 4.3, we looked at the standard mapping functions from sensors capable of
providing data that could be converted into range values, and concluded that instead of
providing point values, a probability map for possible inter-node ranges was a more use-
ful abstraction from the possiblities for sensor data. In a similar manner, we considered
some options for probability mapping for motion detection.

0

0.2

0.4

0.6

0.8

1

p
ro

b
a
b
il
it
y

o
f
m

o
ti

o
n

p
ro

b
a
b
il
it
y

o
f
m

o
ti

o
n

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Difference between distance estimatesDifference between distance estimates

Figure 5.1: Trivial case

95

5.2. MORE PROBABILITY MAPS CHAPTER 5. MOTION

We ideally wanted a probability map in a similar manner as fordistance values, pro-
viding a mapping between an input value from a sensor and the probability that a node
had moved. For dedicated motion detection hardware (e.g. anaccelerometer), such a
map would look like Figure 5.1, a trivial degenerate case with all values> 0 indicating
motion. For our use cases, however, such hardware was not available, and we were likely
to have to work with inaccurate distance measuring hardware.

As we only have distance measuring hardware to work with, we need to look at the
difference between a distance measured at one point in time and a distance measured at
a later point in time, i.e. compare two probability maps. We were initially concerned that
the likely patterns for probability maps shown so far, alongwith other studies regarding
the inaccuracy of RSSI [108, 145, 153] (which is the most likely available source of data
for deriving distance numbers) would give significant variations in the maps for multiple
sequential readings of the RSSI values between a pair of static nodes. In other words, we
expected to see a lot of variation in the RSSI values, and so therefore lots of perceived
motion even when the nodes were not moving.

We further investigated the sources of RSSI variation, and found that in general the
variability in RSSI between a pair of static nodes a fixed distance apart should be sig-
nificantly lower than the variability between random pairs of nodes that are the same
distance apart e.g. if nodesA, B andC are all 10 metres apart, then multiple readings
from a single pair of nodes will show less variability than multiple reading from different
pairs of nodes, despite the distances being the same. This isa result of several of the
primary sources of RSSI variation (node orientation, sender characteristics, receiver sen-
sitivity) being identical for all of the multiple readings from the single pair of nodes, but
will be different for the different pairs, despite the distances being the same. Figure 5.2
indicates a typical probability map for differences between two RSSI values for a pair of
static nodes.

0

0.2

0.4

0.6

0.8

1

p
ro

b
a
b
il
it
y

o
f
m

o
ti

o
n

p
ro

b
a
b
il
it
y

o
f
m

o
ti

o
n

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Difference between distance estimatesDifference between distance estimates

Figure 5.2: Example differential probability map

However, if the environment changed, then the RSSI values changed as well. Addi-
tionally, there were occasional apparently random spikes in the RSSI values even without

96

CHAPTER 5. MOTION 5.3. ADUMBRATE

changes to the environment. This meant that although we could generate maps similar
to Figure 5.2, they would have more outliers and a generally lower trustability than the
source probability maps. We therefore needed a better way tofilter out the outliers and
other problems caused by a changing environment. Notably, this is the situation that we
faced during the Localisation work - the probability maps ontheir own were not very
useful as a distance measure, but were a useful raw data source for more accurate meth-
ods.

As we do not have good location data, we cannot use RSL for merging probability
maps. In fact, the lack of location data for any nodes stops most methods of merging the
maps directly. We instead looked at the idea of mass-spring models, using the original
distance probability maps to generate the force equations for the springs.

5.3 Adumbrate

When we refer to radio range in this section, we are using the maximum possible radio
range between a pair of nodes, including any “gray area” [?] effects. The techniques here
have been influenced by [51] (specifically their gradient descent algorithms for mass-
spring systems in the design of Section 5.3.2.4).

Mass-spring models are a good example of the experiential metaphors mentioned in
Section 1.3.2 - a mental model based on physical experiences. They are based around
the idea of a series of point masses joined together by a series of springs. For node
motion detection, we build a mass-spring model detailed in this section, referred to as
Adumbrate, where the nodes are the point masses, and the springs represent the estimated
ranges between a pair of nodes.

Rest state

0

0.05

0.1

0.15

0.2

p
ro

b
a
b
il
it
y

p
ro

b
a
b
il
it
y

0 2 4 6 8 10 12 14 16 18

DistanceDistance

Figure 5.3: Example Hooke’s law probability map

Normally, springs in mass-spring systems would be modelledaccording to Hooke’s
law of elasticity, where the force on a particular spring is equal to the difference between
the rest state and the current elongation of the string multiplied by a string constant,
k. Instead, we use the probability maps for the ranges betweenthe nodes to generate an

97

5.3. ADUMBRATE CHAPTER 5. MOTION

estimated force on a spring based on the cumulative probabilities for a node being further
away or closer than the current range estimate.

For example, Figure 5.3 shows a probability map for an example spring that actually
follows Hooke’s Law. The maximum radio range in this case is 16, and the rest state is
10, because there is exactly the same area in each of the grey areas. In other words, if
the length of the spring is 10, it is equally probable that thespring (= range between the
nodes) is actually shorter or longer than that length, and sothe force on the spring at that
length is zero.

Adumbrate moves away from trying to generate physical locations for the nodes,
as we do not have location data, but will provide us with topological data suitable for
determining information about the probable motion of the nodes. In order for this to
work, at least a subset of the pairs of nodes need to have stable ranging values, both in
the sense of the nodes being physically static between the first and second measurement
of the data source (RSSI) and the values from the data source need to be almost identical.
If there is not a stable subset of nodes - either because of toomuch motion, lots of change
to the environment (which will effect the RSSI values) or unstable data readings - then
reliable motion detection cannot be done using Adumbrate.

5.3.1 Mass-spring model

In Adumbrate, the energyUA,B of the spring between a pair of nodesA andB with a
current range ofRA,B, a maximum radio range ofM, and a probability map defined by a
function f (x) can be given by the general-purpose formula

UA,B = k(
∫ RA,B

0
f (x)−

∫ M

RA,B

f (x)) (5.1)

wherek is a model-dependant spring constant.

For example, the two grey areas from Figure 5.3 are equal to
∫ RA,B

0 f (x) and
∫ M

RA,B
f (x)

respectively for a value ofRA,B equal to the rest state. This works both with probability
maps that are defined by a function (e.g. gaussian distribution), and those that feed from
a table of data derived from real-world experiences.

One problem with the use of the general-purpose formula is that repeatedly deriving
values for it can be a relatively expensive operation, and for most sensor nodes this can
be a problem. The problem is amplified by the fact that this function will be called
frequently by other operations as we will see later on. Therefore, for models that are
function-derived, it is often better to create an approximation function which provides a
model-specific energy function for lower computational cost.

In our experiments, we worked with node-node ranges assumedto be∼ N(m,v)
(gaussian errors around a most-likely value ofm with variancev). For this model, the
energy function is:

UA,B = k
|RA,B−m|

v
(5.2)

Both classes of energy function should be equally usable, provided the same function
is used for all nodes within a particular system.

98

CHAPTER 5. MOTION 5.3. ADUMBRATE

5.3.1.1 Links

In order to know which pairs of nodes need to have springs inbetween them, we define
the concept of some nodes being “linked” to others. A link between a pair of nodes is
defined as one of two possibilities, either

1. AandBcan communicate directly i.e.AandBhave a known value for the measured
radio range between them.A is therefore a neighbour ofB and vice versa.

2. RA,B < radio range, butA andB are not connected using the previous rule. In this
case the link distance is defined as the radio range, and theUA,B result is scaled
by the probability of a broken link (i.e.Ubrokenlink

A,B = UA,B∗BrokenLinkProbability)
as given from experimental data. Values for the broken link probability will be
approximately in the 0.1-0.2 range.A andB in this case are not neighbours, but
they are linked.

A link creates a “force” due to the spring that pushes/pulls the node towards a more
accurate location. For a given nodeA, we can calculate the forceFA on that node using

FA = ∑
B

FA,B =−∑
B

ˆ(A→ B)UA,B (5.3)

where ˆA→ B is the unit vector fromA to B andA andB are linked.

5.3.2 Local co-ordinate systems

The node that is running Adumbrate is referred to as the “root” node. In order to do
motion detection, we first need a method to build local co-ordinate systems.

5.3.2.1 Reference node placement

Firstly, we need to gather range data (estimated values and variances from the radio
model) from the root node to its neighbours, and also query the root’s neighbours for
range data to their neighbours, giving us a topological map for all of the root’s 1- and 2-
hop neighbours. We can then place the root node, and one of theroot node’s neighbours.
In order to define a local co-ordinate system, we need reference points. The root node
is declared as being located at(0,0), and we also require a second “reference” node to
define the x-axis for this system.

We need a node that is highly connected to the root node’s immediate neighbours,
in order to reduce the quantity of calculations we need to perform later on. Therefore,
the selected reference node will be one of the 1-hop neighbours of the root node, and we
select it using the following rules in order

1. Highest number of root-transitive links (i.e. for a givennode, the number of its
neighbours that are also neighbours of the root node).

2. Highest number of neighbours.

99

5.3. ADUMBRATE CHAPTER 5. MOTION

3. If we still have>1 possible nodes, pick one randomly (lowest node id is a sug-
gested method).

We now also declare this selected neighbour as being initially located at(m,0) wherem
is the measured distance to the neighbour. As this always makesURoot,Neighbour= 0, this
is currently a minimum energy configuration of the positioned nodes.

Once we have the reference node and root node placed, we then move onto the other
nodes.

5.3.2.2 Initial placement

Working from these initial two nodes, we can now start to find initial locations for the
other nodes. We can place all nodes that have two neighbours in the already placed set of
nodes, using those two neighbours (A andB, referred to as the “parent” nodes of our new
node) and the ranges between them to place our new nodeC. In some cases, we will have
chosen parent nodes that are unsuitable for placingC, and in these cases Adumbrate will
fail the sanity tests specified below. If this is the case, we then proceed to check other
possible parent node pairs for suitability.

For a nodeC with already placed neighbour nodesA andB, andA andB are neigh-
bours of one another, we may be able to calculate an inital location usingA andB as
parent nodes toC. Using the measured values for all of the inter-node distances, we start
by calculating∠BAC from the law of cosines.

v =
R2

A,C+R2
A,B−R2

B,C
2RA,CRA,B

, ∠BAC= cos−1(v)

Sanity assumption:|v| ≤ 1

Using a lineD, parallel to the x-axis but throughA, we then calculate the angle of ˆA→ B
to D

n = Ax−Bx
RA,B

, z= sin−1(n) wherez is the angle of ˆA→ B to D

Sanity assumption:|n| ≤ 1

We can now calculate two possible values ofθ (= angle of ˆA→C to D), usingθ =
z±∠BAC. We then have two possibilities forC’s co-ordinates using the two values ofθ
andC = (Ax+RA,Ccos(θ),AY +RA,Csin(θ)). These are shown on Figure 5.4 asC andC′.
We choose the initial location of a node with the minimum amount of force (as defined
in 5.3.1.1) given the current set of placed nodes.

In some cases we will fail the sanity assumptions, and have totest with other pairs of
neighbour nodes. Once we have placed all of the nodes that have a valid pair of placed
neighbours, we then work on the remaining nodes.

5.3.2.3 Placing remaining nodes

If we have remaining unplaced 1-hop neighbours of the root that do not have 2 neigh-
bours in the set of already placed nodes, then we can repeat the process for selecting a

100

CHAPTER 5. MOTION 5.3. ADUMBRATE

reference node (as in Section 5.3.2.1, but using only non-positioned nodes as possibili-

ties), and place this newly selected neighbour at (−
∑placed

p px
n ,−

∑placed
p py

n) i.e. an averaged
location directly opposite the current set of placed nodes,which is the most likely loca-
tion for this remaining unplaced node. We now return to the process of placing additional
nodes that have two neighbours in the “already placed” set, and if necessary keep repeat-
ing this sequence of processes until all the 1-hop neighbournodes are placed.

After placing all of the 1-hop neigh-

Figure 5.4: Placing C

bours, if we still have unplaced 2-hop nodes
with 2 placed neighbours, but for all pos-
sible pairs of placed neighboursA andB,
A andB are not neighbours of each other,
then we use the calculated locations for
a pair of neighbours to work out the dis-
tance between them. The calculated dis-
tance is then used temporarily for the place-
ment steps in Section 5.3.2.2. This is less
accurate, but will still give us a reasonable first guess for the location of a node.

If there are still unplaced 2-hop nodes, without at least 2 placed neighbours then these
2-hop nodes must have 1 placed 1-hop neighbour (by the definition of a 2-hop node as
being connected to a 1-hop node, all of which have now been placed), then we place the
2-hop neighbour at

(
px

1(r1+r2)
r1

,
py

1(r1+r2)
r1

) wherer{1,2} is the root→1-hop and 1-hop→2-hop mea-

sured ranges respectively, andp{x,y}1 is the x- and y-coordinates of the 1-hop
neighbour.

Placing the 2-hop neighbour further along the line of the 1-hop neighbour provides a
reasonably likely initial position, without the need for extensive calculations on the full
set of placed nodes.

5.3.2.4 Topology optimsation

The locations for the nodes are now further refined. Refinement is necessary because our
initial configuration does not take into account all of the links between nodes when we
are placing them.

The total energy of the system in a particular configuration is

Energy= ∑A,BUA,B A,B∈ placed nodes
and there exists a link betweenA andB

An optimal topology for a mass-spring system is when the total energy of the system
reaches a pre-defined minimum value (ideally zero, but in practice this will often not be
possible to achieve). We may not be in this state after the inital placing, as we did not
take all of the link information into consideration initially. We therefore need to further
refine our location data.

101

5.3. ADUMBRATE CHAPTER 5. MOTION

The location of each nodeA is refined, firstly for the 1-hop neighbours, then the 2-
hop neighbours. For 2-hop networks, this makes sure that a node’s parents will always
be evaluated before the node itself.A is refined as follows:

1. If A has an parent node that switched to its alternate location during this round of
the algorithm, then recalculateA’s location and alternate location according to the
previously specified initial placing algorithm (Section 5.3.2.2).

2. Otherwise

(a) CalculateA’s current forceFA, with Equation 5.3 on page 99.

(b) If A has an alternate location, which is a valid location given the communi-
cation links to this node i.e. all direct links toA are within radio range of the
alternate location, calculate the force for the alternate location as well, and if
the magnitude of that force is smaller,A is moved to the alternate location.

(c) UpdateA’s current estimated location
A← A+FAT
whereT is an arbitrary constant controlling the rate of convergence.

These steps are repeated until a minimum energy state is reached, or until the reduc-
tion in energy from one state to the next drops below a pre-defined limit (or the energy
increases). One possibility for improving the speed and accuracy of this process is to
choose a value forT that is proportional toEnergy, allowing for rapid reductions initially,
reducing the motion as we progress towards the minimum energy state. Other techniques
such as simulated annealing [62] could also be applied to select suitable values forT.

5.3.3 Motion detection

Now that we can build a local co-ordinate system, motion detection is possible by com-
paring a local co-ordinate system generated at one moment intime (LCS1) by a node, to
another generated system by the same node at a later point in time (LCS2). We require at
least 2 nodes common to both systems (which may or may not be neighbours), in order
to be able to use this information, otherwise we cannot work out which way the node
moved.

For each pair of nodes which we will designateA andB, using theLCS1 system co-
ordinates forA, B and our root node (marked asI), as well as range data fromLCS2 for
our root node relative toA andB, we can calculate the possibilities for the location of the
LCS2 root inLCS1 (designated asK) using

(Kx−Ax)
2 +(Ky−Ay)

2 = R2
K,A (5.4)

(Kx−Bx)
2 +(Ky−By)

2 = R2
K,B (5.5)

102

CHAPTER 5. MOTION 5.3. ADUMBRATE

Solving forKx in terms ofKy, A andB, gives us

e = R2
K,A−A2

y−A2
x (5.6)

m =
e− (B2

y +B2
x−R2

K,B)

2(Bx−Ax)
(5.7)

n =
2(By−Ay)Ky

2(Bx−Ax)
(5.8)

Kx = m−nKy (5.9)

Using Equations 5.4 and 5.6-5.9 we can then solve forKy

o = (Axn−Ay−mn)2(m2 +2Axm−e) (5.10)

Ky =
−2(Axn−Ay−mn)±2

√

o(n2 +1)

2n2 +1
(5.11)

Equation 5.11 gives us two values forKy which we can then substitute back into
Equation 5.5 to get values forKx.

h = R2
K,B−B2

y−B2
x (5.12)

Kx = −Bx±
√

2ByKy +h−B2
x−K2

y (5.13)

This gives us up to 4(Kx,Ky) pairs that represent potential values forK. Results
involving imaginary numbers are discarded, as they do not represent valid solutions.

Figure 5.5: Calculating values for K

For each pair of nodes common to both co-ordinate systems (A andB), and using the
LCS1 system co-ordinates forA, B and our root node (marked asI), as well as range data
from LCS2 for our root node relative toA andB we can calculate the set of possibilities
for the location of theLCS2 root inLCS1 (Figure 5.5).

103

5.3. ADUMBRATE CHAPTER 5. MOTION

We now have a set of up to 4 possible locations forK which are checked against the
measuredRK,A andRK,B values. The values that have correct ranges (at most two of them,
by standard geometrical theory regarding the intersectionof two circles [139]) are valid
locations forK, and we choose the closest to the existing root node, as the movement
between separate invocations of this algorithm should be minimal.

Each of the validK locations represents a “motion vector” (MV) for our root node.
We can calculate values forMV using the locations ofK as the vector betweenI andK,
as in the event of no changes,K = I , andI is at (0,0) by the definition ofI being the
origin of the local co-ordinate system. The average of the values forMV is the assumed
motion, and the maximumK values in each direction gives us a bounding box whose
area is proportional to the inaccuracy in ourK measurement.

5.3.4 Results

We performed a series of experiments to test Adumbrate, starting from a randomly gen-
erated set of “true” node locations, using 226 nodes in a 100x100m area, with a radio
range of 14m, giving an average connectivity of approximately 12.

Experimental tests [108] have shown that the change in the error between consecutive
measurements for the range between a pair of static nodes, will be significantly smaller
than the error between the measured ranges and the true range. This is because many of
the sources of range inaccuracy (reflections, batteries running down, low-quality radios,
etc) should be relatively stable between one range measurement and the next. We there-
fore setup our experiments to mimic this, by taking the topology and ranging information
from the “true” locations, and adding some gaussian distributed noise to the ranging data
(mean equal to the “true” range, variance at different levels for different experiments).
This “noisy” ranging information was then used to generate alocal co-ordinate system
(Section 5.3.2). We then moved the root node by a random amount (uniformly random
direction, distance depending on the experiment). For all the links not connected to the
root node, we changed their “noisy” ranges by a small random value (mean equal to the
original “noisy” range, variance at different levels for different experiments), and for the
links connected to the root node, we re-generated new “noisy” ranges according to the
true ranges for the new root node location (noise generated with the same parameters as
the first local co-ordinate system). This second set of “noisy” data was then used to gen-
erate another local co-ordinate system, and the two were compared as per Section 5.3.3.

For all of the experiments, the results are specified as percentages of the radio range,
and are averages of 20 runs of a particular set of parameters,using a different random
seed each time. Figures 5.6, 5.7 and 5.8 show the results withinaccuracy for the non-
moved links set to 0%, 5% and 10% of the original variance. The6 lines on each of the
graphs represent a variety of movements of the root node between the first and second
sets of data. At 10% and 20% motion, neither altering the original error nor the second
measurement inaccuracy significantly changes the results,and the percieved motion is
reasonably accurate (±3%). However with greater motion (>20%), the percieved motion
becomes increasingly inaccurate. Note that this is the motion between successive tests of

104

CHAPTER 5. MOTION 5.3. ADUMBRATE

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30P
er

ci
ev

ed
 lo

ca
tio

n
ch

an
ge

 (
pe

rc
en

ta
ge

 o
f r

ad
io

 r
an

ge
)

Range error variance (percentage of radio range)

0% change
10% change
20% change
30% change
40% change
50% change

Figure 5.6: 0% inter-measurement inaccuracy

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30P
er

ci
ev

ed
 lo

ca
tio

n
ch

an
ge

 (
pe

rc
en

ta
ge

 o
f r

ad
io

 r
an

ge
)

Range error variance (percentage of radio range)

0% change
10% change
20% change
30% change
40% change
50% change

Figure 5.7: 5% inter-measurement inaccuracy

105

5.4. MOVING LOCALISED NODES CHAPTER 5. MOTION

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30P
er

ci
ev

ed
 lo

ca
tio

n
ch

an
ge

 (
pe

rc
en

ta
ge

 o
f r

ad
io

 r
an

ge
)

Range error variance (percentage of radio range)

0% change
10% change
20% change
30% change
40% change
50% change

Figure 5.8: 10% inter-measurement inaccuracy

the motion detector, and so if we run the algorithm frequently enough (depending on the
average rate of motion of the root node) these more difficult cases can be avoided.

The curves in all cases are relatively flat - a first guess at expected results for these
experiments would assume an upwards curve in perceived motion as the error between
true and measured distances increases. However, the motiondetection algorithm that we
are using here works with the differences between two measured distances, and as the
errors for each of the two measured distances are similar, increasing the error from true
distances does not significantly alter the algorithm’s results.

Increasing the change in the error between the two measured distances does not
change the results that much either, and this also applies with additional tests that we
have done for higher values of the error change. The error values that we have used here
are similar to values shown in experimental testing [108].

5.4 Moving localised nodes

We have now shown that motion detection can be done without any knowledge of the
physical locations of the nodes. However, this is subject tonumerous false positives,
especially when a node is moving rapidly between the first andsecond estimates of the

106

CHAPTER 5. MOTION 5.4. MOVING LOCALISED NODES

ranges between nodes. In this section, we show how to detect motion with localised
nodes, without false positives, and in a way that works better with more movement.

If a node has been localised, and then moves without being aware of its movement,
then the node will be somewhere other than where it thinks it is. If it then broadcasts its
old location data, while being at the new location, then other nodes in the network will
have inconsistent information. This is only a problem with non-anchor nodes, as when
anchor nodes move to a new location, they will have new location data, and in both cases
their true and calculated locations are the same (to within aknown degree of accuracy).

5.4.1 Bounding boxes

Anchor nodes periodically broadcast their locations, and if a node has received location
data from an anchor then it knows it is in radio contact with that anchor, and so therefore it
must be within radio range (where “radio range” is a maximum possible value including
“gray area” [?] effects) of that anchor. Thus we can limit the space of possible locations
for that node to a circle centred on the anchor’s location with radius equal to the radio
range. Bounding region information can therefore be used tosanity-check information
from localisation algorithms. For practical purposes (significant speed improvements)
we use a bounding box rather than a circle, with each side equal to 2∗ radiorange, and
the anchor in the centre.

We looked at this in detail earlier in relation to Localisation (Section 4.4.1), but we
now focus on the motion related information that we can derive from bounding boxes.

5.4.2 Breaking the Boxes

As a consequence of the sanity

Figure 5.9: Motion example

condition that a node’s bounding box
will always contain its true location,
and that any two nodes that are in
communication must be within radio
range of each other, bounding boxes
assume another sanity condition - that
the current bounding box of a node
and another bounding box that it has
received, and therefore wishes to in-
tersect with, will always have a non-
empty intersection.

Figure 5.9 is an example of how
motion of a node can break bounding box sanity.A1 andA2 are the locations of a
moving nodeA before and after it moves, andB is a stationary node. The inner and outer
boxes around the nodes represent their bounding boxes and bounding boxes expanded
by radio range, respectively. IfA talks to B when it is atA2, andA thinks it is still
located at positionA1, then there will be an inconsistency betweenA’s bounding box and
the bounding box ofB, which means that one of the two nodes must have moved. In a

107

5.4. MOVING LOCALISED NODES CHAPTER 5. MOTION

number of cases we will not be able to detect motion (the maximum allowable motion
before we can detect motion with absolute certainity is proportional to the size of the
bounding box of a node), but in these cases we do maintain bounding box consistency,
so we can still generate valid bounding boxes, although witha reduced accuracy due to
the size of the boxes.

5.4.2.1 Portmanteau

When we do detect bounding box inconsistencies, we can work tocorrect the problem,
using the algorithm described below, which we refer to as Portmanteau. If a nodeN
receives a new bounding box from a neighbourM that would create an inconsistent situ-
ation (BoxN ∩BoxM = ⊘), then this tells us that either thatN or M has a problem. Both
nodes then check how many of their neighbours currently consider them inconsistent. If
two neighbours (including eitherN or M) consider one ofN or M currently inconsis-
tent, then that node should recalculate its bounding box information. This is done by
discarding all current bounding box data (i.e. returning the node to Step 1 of Algorithm 2
on page 77), and sending a control packet to all of the neighbouring nodes saying that
any currently used bounding box information from that node should be discarded, and
requesting their current bounding boxes.

Figure 5.10 shows how this could

Figure 5.10: Inconsistency

work for a nodeA moving fromA1
to A2. It starts to communicate with
nodesB andC, and there is an incon-
sistency between the boxA1 and the
boxes forB andC, so there is an in-
consistency “link” fromA↔ B and
from A↔ C. As two of A’s neigh-
bours consider it inconsistent, it re-
sets its bounding box data back to
the startup configuration, and sends
a control packet toB andC invalidat-
ing any bounding box data they have

gained fromA, and requesting their bounding boxes. This would then result in a new and
valid bounding box forA. Any localisation algorithms being run on the node should also
possibly be notified at this point if the previously determined location for the node is now
outside the new bounding box.

In many of the possible scenarios for bounding box inconsistency, the problems will
now be resolved, and the node will have a new bounding box. If however, this fails, then
the node should send a message to its neighbours declaring that it currently considers
them inconsistent, and remain in an inconsistent state. Theinconsistent node should now
stay in that state until there is a change in any of its neighbours’ bounding boxes, in which
case the bounding box for this node should be re-evaluated tocheck for the resumption
of consistency.

108

CHAPTER 5. MOTION 5.4. MOVING LOCALISED NODES

m
o
t
i
o
n
/
d
i
s
t
.
p
s

Figure 5.11: Bounding box testing

One problem here is thatB andC may have previously integratedA’s information
into their bounding box configurations, and ifA’s information is later found to be invalid,
thenB andC need to be able to work out what parts of their bounding boxes are due
to A and what are due to other nodes. In order to counter this, eachnode can keep a
record of the bounding box for each other node, in order to be able to rebuild an accurate
bounding box when one node’s information is found to be invalid. If a node resets its
bounding box information due to detected inaccuracies, then the node also discards the
list of bounding boxes that it had stored as well. To deal withmobile situations where
there are many various sources of anchor information, and the storage of every other
recieved node would be impractical, then only a limited set (N most recent recieved
boxes) are stored, in addition to the calculated box for the node in question. Discarding
some recieved boxes after they have been used to improve the local box does reduce
our capability to handle inconsistent boxes due to motion, but given the limited storage
available to WSN nodes, this is a reasonable trade-off.

5.4.3 Results

We performed a series of experiments, testing how much motion was necessary before
Portmanteau could detect inconsistencies. The nodes were scattered in a 200 x 200 box,
with radio range set to 14. We varied the number of nodes to getdifferent levels of av-
erage connectivity in the network, as well as designating a percentage of the nodes as

109

5.5. RELATED WORK CHAPTER 5. MOTION

anchor nodes. For each simulation run, we allowed the box sizes to exchange bounding
boxes as per Section 4.4.1 (without any of the limits on number of transmissions to at-
tempt to generate the best possible bounding boxes) until they stabilised at their smallest
possible values, and then started to move one of the nodes in arandom direction. Each
experiment was run 20 times, with varying random seeds for each configuration, and the
results given here are an average of the 20 sets for each configuration.

The graph in Figure 5.11 shows the minimum motion necessary before inconsistency
checking noticed motion. The minimum motion necessary for detection reduces with
higher connectivity networks, as well as with increasing anchor percentages. For most
scenarios, the amount of motion necessary does not in general exceedradio range. Ad-
ditionally, all of the experiments reported a zero false positive rate i.e. no node reported
as moving was in fact stationary.

5.5 Related Work

Capkun et al. [19] created an algorithm to create local coordinate systems, and a method
for translating from one system to another. They then proceeded to attempt to use a
network of co-operating nodes to build a Network Coordinatesystem (a form of local
co-ordinate system where all of the nodes in a network use thesame local co-ordinate
system), using a Location Reference Group (LRG) of semi-stable (i.e. minimal move-
ment) nodes as a centre for the topology. We have used an LRG-like system here, but
using information from a local neighbourhood rather than the entire network. Network
Coordinate systems significantly increase the amount of traffic required to setup and
maintain the system over local coordinate systems, and thatcost rises with the size of
the network. The benefits gained via the use of this are minimal, and in most mobile
anchor scenarios the situation where no anchor informationis available is for a limited
time only, and so cross-network protocols that could utilise a network coordinate system
(e.g. source-to-sink message routing) would be better off storing data locally and waiting
for anchor information before transmitting. Priyantha et al. [102], as well as Shang and
Ruml [118] also looked at LRG-like systems, with similar problems regarding processing
and communication costs as Capkun et al.

Krumm and Horvitz [65] did some earlier work with motion detection using RSSI.
Their method used smoothed histograms of varying signal strength from Access Points
(APs) in an 802.11 network to determine whether a particularnode was moving. The
motion detection algorithm did not explicitly use locationdata, but the requirement for
the APs to be static allows them to be used as reference points. Our work here requires
that a subset of the nodes being measured are relatively static (such that comparisons be-
tween the different local co-ordinate systems can be made),but without requiring that the
currently-used static nodes remain permenantly static. Ifan application has permenantly
static infrastructure nodes (e.g. an urban 802.11 network), other more efficient algorithms
are possible, but this cannot be guaranteed for WSNs. Muthukrishnan et. al [85] also did
similar work more recently, but using FFTs (Fast Fourier Transforms) to process the
RSSI data instead of smoothed histograms.

110

CHAPTER 5. MOTION 5.6. CONCLUSIONS

5.6 Conclusions

We have shown here another way to look at localisation data for the purposes of motion
detection. With standard approaches to localisation, onlysingle range values would be
available, and motion detection with that data would be verylimited and significantly
inaccurate. By finding new applications for the abstractions developed in Chapter 4 -
probability maps and bounding boxes - much more can be done. In particular, the mass-
spring model, with its representation of inter-node distances as springs in order to limit
the effect of errors occuring in multiple measurements overa period of time, provided a
new way to look at the problem of motion.

We have also shown that even in situations where localisation breaks down (such
as anchor-less scenarios) that motion can be detected without having location data, and
without requiring extra hardware. Working with inaccurateranging data, even with the
probability maps, is difficult, especially without anchorsto provide sources of known
sane data. With mass-spring anchor-free approaches, we have shown that it is possible
to work around the inaccuracies and derive good motion information. Mass-spring ap-
proaches are somewhat more computationally expensive (compared to using motion de-
tection hardware), but given the ability to provide motion information without requiring
extra hardware or anchor nodes, we believe that this is worthit. Mass-spring approaches
are also able to rapidly detect motion, but at the cost of introducing the chance of false
positives. Additionally, if we do have anchor nodes, then wehave shown how we can de-
tect motion with simple methods based on bounding boxes, andreduce the false positives
level down to zero.

5.6.1 Future Work

To a certain extent, all of the possible future improvementsmentioned for Localisation
apply here as well, given the dependancies of the techniqueshere on the abstractions
detailed in Chapter 4. Any improvements in the probability maps or reductions in the
size of the bounding boxes will improve the results shown here.

Additionally, we would like to explore integrating together data from both mass-
spring models and bounding box methods into a unified “end-to-end” motion detec-
tion algorithm, incorporating data from results over the entire lifespan of an application.
Mass-spring models are good at noticing relatively small amounts of motion, with some
level of false positives, but less good with larger quantities of motion. Bounding box
methods are bad at noticing small amounts of motion, but oncemotion levels exceed
certain thresholds then they are much more capable of noticing it, and without false pos-
itives. Creating a system that blends the best of both would be a sensible option which
would, for example, allow the bounding box methods to tell the mass-spring models
which nodes have moved “too much” and so let the mass-spring models work with just
the low-motion nodes.

111

5.6. CONCLUSIONS CHAPTER 5. MOTION

112

Chapter 6

Aggregation

In this chapter:We challenge both the use of standard statistical functions
for aggregation, and the notion that aggregation can alwayscombine all data
into a single packet. We then build a phase space representation for arbitrary
application-specific data, and build a new aggregation protocol that uses the
phase space representation to significantly reduce the errors v.s. traditional
aggregation protocols

Whatever the nature of the application, WSNs generate data. This would be because
of the primary goals of most sensor networks: gathering and processing data about the
environment around the nodes. Also, for most applications,the more data that can be
gathered, the better. One motivation behind this is that if excess data is gathered, it can
often be used to improve the quality of the end results from the application, and that the
“cost” of gathering more data is often not thought of as a major constraint in other data-
gathering systems. Additionally, with increasing numbersof nodes, the volume of data
becomes ever greater. Therefore, one of the fundamental problems for these networks is
managing the outputted data.

Given the energy and space limitations of WSNs, moving increasing quantities of
data to a sink node/end-user computer where the data can be stored and analysed will
reduce the operational lifespan of such a network. For WSNs, gathering more data than
is strictly needed is no longer the safe option. It can be concluded that reducing the
amount of data that needs to be gathered is a required goal in order to achieve usable
network lifetimes. This goal, however, conflicts with the information gathering purpose
of the networks. A network that transmits no data (for example) would be very efficient,
but not very useful.

We have the difference here between data and information: applications need infor-
mation, which can be seen as the end result of data once it has been processed. We do not
necessarily need to transmit the data all the way to the sink node before it is processed,

Most of the content in this chapter has been published as “Foxtrot: phase space data representation for
correlation-aware aggregation” by Tom Parker and Koen Langendoen at the Fourth Annual IEEE Communica-
tions Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON 2007) [4]

113

6.1. EXISTING WORK CHAPTER 6. AGGREGATION

and so the area of in-network processing techniques [35] - ofletting either individual
nodes (or several nodes working together) do some initial processing of the raw data into
information before it is transmitted further into the network - was formed.

One particular use case of note for in-network processing ofsensor data is that there
will be some parts of the raw data that are not required to get the information that the
application actually needs in the end, but would normally betransmitted anyways. This
idea is addressed by aggregation techniques, which allow anapplication to decide “this
data is redundant/unimportant and can be discarded”, and soreduce the network data rate
while still providing a particular set of required information.

In this chapter, we look at aggregation techniques, and showwhat can be done to
improve their design by re-examining their core abstractions.

6.1 Existing work

Much work has already been done in both aggregation, and in querying mechanisms
for WSNs that indirectly use aggregation techniques (e.g. SQL-based techniques like
TinyDB [78], TAG [77] and STREAM [8]) for whole network queries. Given that one
of the major purposes of statistical techniques is reducinglarge bodies of data down to
a smaller set of useful representative values, their use seems an obvious good choice for
aggregation techniques.

Averaging is a popular choice [77, 78] (partly because of theCentral Limit Theo-
rem [142]), as this can reduce any number of data points down to just an averaged value
plus a count of the elements merged (the count is required to aid merging of multiple
averages at later nodes). This has several major advantages- it is fully distributed; the
end result is always very small (and the same size) regardless of how many data points
were initially available; processing and space costs are minimal; and an average value
for a region is a common example query asked by many proposed sensor network appli-
cations. Overall, it is a very easy (and common) question to answer, and one that many
aggregation protocols have optimised towards.

In general, there is a wide variety of possible aggregation functions, and Madden et
al. [77] (based on earlier work by Gray et al. [40]) proposed ataxonomy for aggregation
functions, describing four properties of interest. They were

• Duplicate sensitivity - will the aggregate results change if an input value is dupli-
cated?

• Exemplary/Summary - does the aggregate provide particular“exemplary” values,
or a summary of all values?

• Monotonicity - will any combination of two partial aggregation states always be
larger than the individual values (or alternately, always smaller, but not both in one
aggregation function)?

114

CHAPTER 6. AGGREGATION 6.2. PROBLEMS

• State size type

– Distributive - partial state size is the same as the end statesize

– Algebraic - partial state size is not the same as end state size, but is a constant
size

– Holistic - partial state size is proportional to the number of data items i.e. little
to no partial aggregation can be done

– Content-sensitive - partial state size is proportional to some (statistical) prop-
erty of the data values.

– Unique - partial state size is proportional to the number of unique data items.
Can be considered a special case of content-sensitive.

Madden et al. described a generic system (TAG) that was capable of doing aggregation
regardless of the properties of the aggregation function, based upon an SQL-like language
that described how to do aggregation, with the addition of the notion of “epochs” to
specify that aggregation would only be done on sets of valuesthat were all gathered
within the same limited time frame.

6.2 Problems

The one question that these systems fail to ask is: is the answer useful? Take the common
example of “what’s the average temperature on this floor?”, and using the answer as
part of a feedback loop to keep the temperature at 20 degrees celsius. Imagine that
there are 5 sensors on a floor of a building and the answer is 22 degrees. The common
assumption would be that most of the sensors have a temperature of about 22 degrees,
and so the system would drop the temperature by 2 degrees. Butthen a report comes
in of a room at 18 degrees. What actually happened is that 4 of the sensors were at 20
degrees, and the 5th sensor had been placed near the output vents of a computer which
rose the temperature around that node to 30 degrees. The averaging algorithm, without
any correlation awareness, merged all the values into a single value that says nothing
about the actual nature of the true temperature values, and thus too much information
was discarded.

There are in fact only two interesting scenarios for averaging: a) all data values are
approximately similar (or at least vary around a common centre), in which case a sam-
pling of a subset of the nodes would get as good an answer as averaging, but with less
network traffic; or b) data values vary widely (as in the example), resulting in a result
that bears no resemblance to the actual data.

Alternately, we could use the median of a set of values instead. However, for an
accurate median we need all the original data points at a single point. Q-Digest [120]
attempted to reduce this problem by only transmitting a subset of the candidate data val-
ues, and providing a method to merge candidate sets together. This gave a reasonable
approximation to the median (as well as other statistical values) while reducing packet

115

6.3. PHASE SPACE REPRESENTATION CHAPTER 6. AGGREGATION

rates, but ran into the same problem as averaging: is the answer useful? In the tempera-
ture example above, it would have given us the 20 degree value(and probably also the 30
degree value depending on the level of merging). This is an improvement over averag-
ing, but in situations with a larger number of nodes, rare events will still be discarded in
favour of lots of information about common events. Also, Q-Digest gives us no location
awareness; in the temperature example, we would be unable tolocate the problematic
sensor without using other techniques.

Statistical techniques are mostly limited by their requirements for needing most of the
data to be merged in one location, combined with the issue of merging multiple subsets
that have been previously merged. Further work in this area could possibly reduce these
two problems, but we would still need to find a technique that gives useful answers, and
that is a much harder problem.

Unfortunately, existing statistical aggregation work is not correlation aware: all data
points are automatically considered as inputs for the aggregation mechanism, without
consideration to the nature of the data. Additionally, rareevents (e.g. a single sensor with
different data) are not considered statistically significant, whereas for WSN applications
a single sensor reading may well be important, e.g. only one sensor is attached to a tree
that is on fire. Discarding the bulk of unimportant data (limiting data from the large
areas of a forest that are not on fire) whilst keeping the useful information should be
a focus for WSNs. Location data is also vital for WSNs (“Which tree is on fire?” See
also Chapter 4), and when correlation awareness is considered, we must also check where
multiple data points were measured in order to determine whether they can be aggregated.

We conclude that a newer approach, focused on the usefulnessof the end result to
the users of the application, is required for an improved aggregation technique. We also
conclude that the major goal of aggregation is a trade-off between information loss and
packet data rate reduction, and that any aggregation technique that attempts to discard
packets without considering what level of information lossthis will cause - “blind” ag-
gregation - is fundamentally flawed. This is a problem because of the notion that stan-
dard statistical techniques represent a “good” summary (for values of “good” for typical
sensor networking applications) of a large collection of data. These summaries are an
abstraction away from the true data values, but not a good abstraction for our purposes
(due to the blind discarding of data), and therefore this needs rethinking.

In this chapter, we describe a new way to summarise large datasets, and describe
an improved aggregation algorithm using this new method of data summary. We then
proceed to compare this new method to aggregation without correlation awareness, which
previously resulted in variable (often high) levels of error in the end results, and show
our new method limits errors in the end results for a variety of input data scenarios.

6.3 Phase space representation

In order to consider how to create a technique that would combine correlation awareness
with location knowledge, we turned to phase space representations of the data. Phase
space [143] uses an abstractn-dimensional space to represent all of the possible states

116

CHAPTER 6. AGGREGATION 6.3. PHASE SPACE REPRESENTATION

of a system. Each degree of freedom in the space represents a different data value. Our
initial approach to this focused on single sensor values, plus their associated location
data. We later realised that the same techniques could not only be used to combine
multiple sensor values, but to also incorporate other data sources.

In total, we identified three possible sources of data:

• Raw sensor values (e.g. humidity and temperature)

• Internal node data sources (e.g. location data)

• Functions of other data sources (e.g. rate of change)

The state of a node at a particular instant in time can be represented by a point in phase
space defined by the values of all of the sources of data being used. Most applications
would normally only be interested in a small number of sensors, plus 2 dimensions for
location data, but the capability for extra data sources is automatically available. Irre-
gardless of what data is being used, the data can still be represented only as an abstract
concept of a series of values without any knowledge of which of the three categories the
original data source was. Individual axes may however specify certain source specific
limits on what can be done with data in that particular axis.

The basic data unit is that of a point in phase space, but we also want to be able
to merge data points into larger regions also within the samephase space. A region
in phase space represents a range of values. A region is defined by a set of numbers
{min1, ...minn} and{max1, ...maxn} for ann-dimensional space, and covers all points of
the form{v1, ...vn} such that∀x,x∈ N,1≤ x≤ n,minx ≤ vx ≤maxx. A point is defined
as a zero-sized region i.e.∀x,x∈ N,1≤ x≤ n,minx = vx = maxx

The use of phase space regions for data representation can becompared to Gray
et. al’s earlier work on Data Cubes [40], especially Dryeson’s work on incomplete Data
Cubes [30]. Phase space is however only concerned with numbers (as opposed to the
options for text values used in Data Cubes), and manipulation and combination of the in-
dividual data points is therefore a valid option. If text values are included, then describing
a region within the text is more difficult.

For example, the numbers 10, 11, and 12 can be described as the1-dimensional re-
gion 10-12, whereas the equivalent for the words North, South and East is more difficult.
The region for a set of text can only be correctly described byan application-specific
knowledge of the semantics behind the text, but numbers can be manipulated without
any knowledge about what they represent. The “10, 11, and 12”of the example could
be temperature values, distances, ADC values or anything else, and the description of
“10-12” still applies.

6.3.1 Region merging

Aggregation can now be specified as merging of multiple phasespace regions into a
different (generally smaller) quantity of phase space regions. We also need to note that
some regions may not be mergeable, and that any processing time spent attempting to

117

6.3. PHASE SPACE REPRESENTATION CHAPTER 6. AGGREGATION

merge unmergeable regions is effectively wasted. Therefore, one design aim is that if the
merging fails, it should fail as early as possible to reduce wasted effort.

Figure 6.1: Greedy merging of two points

An initial greedy approach to merging would be simply to merge any and all points
into a large region that contains all of them. This approach has a number of problems,
as demonstrated in Figure 6.1. Specifically, the approach istoo greedy, and ends up
describing regions that not only contain the original points, but also large areas that are
not in the original data set, and so can provide results that differ significantly from the
original data. Additionally, greedy merging of sensor datawill result in large ranges
in the results e.g. for the temperature example in Section 6.1, we would get the range
“20-30 degrees”, losing significant amounts of information. We do however still want to
be as greedy as we can in the merging algorithm, as a greedier algorithm will result in
being able to merge greater numbers of regions into a single region. Therefore, in order
to find an algorithm that is greedy enough, but not too greedy,we need to constrain how
data points are merged, and also decide if some points can in fact not be merged at all.
A particular set of data points are only mergeable if all sources are mergeable for the
particular points.

Figure 6.2: Location merging examples

The constraints required for sensor data and for location data differ in their require-
ments. For location data, we want to be as greedy as we can, provided that the end region
does not cover areas that were not implied by the original data. For sensor data, we
have more fixed constraints. For example, an application mayspecify that an acceptable
level of data loss from a temperature sensor is 1 degree. In this case, if two points are
further apart than 1 degree in the temperature dimension, then they cannot be merged.
Conversely, if they are no more than 1 degree apart, they can always be merged. This
contrasts with location data, where “close” values may create over-sized regions whereas
“distant” points may not. See Figure 6.2 for examples of these two cases. In the “distant”

118

CHAPTER 6. AGGREGATION 6.3. PHASE SPACE REPRESENTATION

case we have nodes in all of the corners of the created region,making the assumption that
the central region contains similar values a reasonable inference. In the “close” example,
we have no points in the top-left and bottom-right areas, so merging these points would
infer much more without evidence to back up the assumption. If, on the other hand, we
had data from nodes in the top-left and bottom-right areas, then creating the “close” re-
gion would be much less likely to cause problems. Another factor that makes this form
of estimate more reliable is the use of proper heuristics fordealing with overlapping
regions, which we will look at in Section 6.4.3.

6.3.2 Constraints

Given the two differing forms of constraint, we define two classes of source data: stati-
cally and dynamically limited. In general, these will correspond to sensor data and loca-
tion data respectively, but this may vary on a per-application basis, and for the purposes
of merging we only need to know the class of a data source.

Statically limited data sources have the criteria that a data point with a particular
value from this source can be merged with any other data pointthat is not further away
(difference between two values) than a specific value e.g. a temperature source may say
that the limit is 1 degree. This means that two temperatures that are more than 1 degree
apart will never be merged, thus giving a guaranteed limit onthe amount of information
that will be discarded.

6.3.3 Dynamically limited sources merging

Dynamically limited sources are more complicated, and are merged as a set (i.e. all dy-
namic sources are tested at the same time). They have the advantage that they have no
fixed limits as to which can be merged, but instead have a series of criteria to guaran-
tee that the created region does not expand into regions thatare not suitably covered by
the original regions used. The method works with the corner points of all the regions
involved, and not expanding a region in a particular direction unless there are suitable
points in that direction to indicate that it is safe to expandin that direction, in order to
avoid overly greedy merging.

To merge a set of regions defined by dynamically limited sources (see also Fig-
ure 6.3):

1. Define an initial zero-sized box in the centre of all the original regions, calledΨ.

2. Λ = set of all corners of the regions.

3. For each dynamically limited sourceα, perform steps (a) to (e) twice, firstly for
the positive direction, and secondly for the negative direction. See Figure 6.4 for
an example. The current direction is specified asϒ.

(a) The set of test directions is defined as as the cartesian productA1× . . .×An,
such thatAβ = {Apos,Aneg} (positive and negative) for all of the dynamic
sourcesAβ andβ 6= α.

119

6.3. PHASE SPACE REPRESENTATION CHAPTER 6. AGGREGATION

Figure 6.3: Dynamically limited sources merging example in2-D

(b) Initialise a result variable∆ to the maximum possible value ofα if ϒ is posi-
tive, otherwise to the minimum possible value.

(c) For each test directionAβ , check if there exists a point inΛ that satisfies each
direction inAβ for Ψ. For example, given a test direction{xpos}, the point
must have anx co-ordinate greater than or equal to the largestx co-ordinate
of Ψ. Similarly, for {xneg}, the point would need to have anx co-ordinate
smaller than or equal to the smallestx co-ordinate ofΨ. If we have one
or more points that satisfy this criterion; then ifϒ is positive, set∆ to the
minimum of all of theirα values, else set∆ to the maximum of all of theirα
values.

(d) If we were unable to find one of the test values in step c), quit as these regions
are not mergeable.

(e) If ϒ is positive, set the maximumα value forΨ to ∆, else set the minimum
α value forΨ to ∆.

4. If we have completed step 3 without quitting, thenΨ is a merged form of the
original regions.

5. For each original region, check it againstΨ. If Ψ completely covers the original
region, we can discard the original region. Alternately,Ψ may partially cover the
original region. IfΨ completely covers the original region on every dynamically
limited source aside from one, remove the part of the original region that is within
Ψ. Otherwise, we cannot do anything with the original region.

6. If we were unable to completely cover any regions in step 5,then we have gener-
ated an extra region, and so the original regions were not mergeable. Otherwise,
return the revised set of regions, includingΨ.

120

CHAPTER 6. AGGREGATION 6.4. FOXTROT

Figure 6.4: Example of Dynamically limited sources mergingStep 3

6.4 Foxtrot

Foxtrot is built from the new data abstraction and merging concepts introduced in the
previous section, creating a novel fully-distributed dataaggregation protocol.

In common with any other aggregation protocol that wants to do in-network aggre-
gation, Foxtrot requires a source-to-sink routing protocol that allows packets passing
through a particular node to be altered and/or dropped depending on the choices of the
aggregation protocol. In fact, the easiest way for aggregation protocols to do this is is for
the routing protocol to not automatically forward incomingpackets, but to hand them to
the aggregation protocol, which then may later give (some) packets back to the routing
protocol for further forwarding. One such protocol is described in Chapter 3 (Guess-
work), but Foxtrot will work with other routing protocols aswell.

Foxtrot is an event-triggered protocol, with the events being the timers for the peri-
odic data input interval defined by the application, and packets arriving from other nodes.
We first describe the interactions between Foxtrot and othercode in the software stack,
and then describe the set of actions necessary to implement Foxtrot by defining what to
do when events (new data in from either the application layeror in packets from other
nodes) occur.

6.4.1 Interfaces

Foxtrot requires input from both the application and other modules in the software stack,
and provides output data to the application:

121

6.4. FOXTROT CHAPTER 6. AGGREGATION

• Application Input

– All nodes need to initialise Foxtrot, providing the length of the periodic
“epoch” interval and the values for the static limits (Section 6.3.2).

– Data source nodes need to provide data from their sources to Foxtrot on re-
quest, which will occur every “epoch”. Notably, this is in the “raw” form of
the data, as opposed to the phase-space form (which is generated internally
by Foxtrot).

• Interaction with other modules

– Foxtrot needs location data, generally from a Localisationmodule (or exter-
nal location information hardware e.g. GPS)

– Foxtrot needs timing functions in order to implement “epoch” intervals (which
will generally require network-wide time synchronisation).

– Packets are handed by Foxtrot to a routing protocol, which routes the packets
to the next hop node in the route to the sink and then gives the packet back to
Foxtrot.

• Output to Application

– Foxtrot provides data to the sink node(s) in the merged phase-space form,
providing both location and data source information.

6.4.2 Source nodes

As we noted above, data source nodes hand data to Foxtrot whenrequested (once every
“epoch”) . Foxtrot then converts the data into the phase space data representation along
with the location data, and hands it off to the underlying routing protocol for forwarding
towards the sink. If packets arrive at a node, then Foxtrot will attempt to merge them
together along with any other packets currently stored at this node, and then hand over
the results to the routing protocol.

Currently, Foxtrot does dynamically-limited sources merging for the location data,
generating a series of sets of possible merged packets, which are subsets of the complete
set of locally held packets that the algorithm in Section 6.3.3 considers mergeable. Each
set of possible merged packets is then handed to an internal “threshold merging” func-
tion, which uses the static limit input values provided by the application to make further
decisions about whether the particular set can be considered mergeable. One potential
future extension to Foxtrot would be to allow applications to provide their own “merging
test” function, allowing applications to make more finer grained decisions about merging
e.g. variable thresholds for particular input sources depending on the current values of
other sources.

122

CHAPTER 6. AGGREGATION 6.4. FOXTROT

6.4.3 Sink node

Sink node(s) receive packets consisting of regions in the phase space for the application.
This data should then be handed over to the application (which may well then give the
data to the sink-connected PC, store the data for future reference, or any other action that
the sink node wishes to do). However, the format in which thisdata is provided to the
application brings up a number of issues. Applications willprobably have to be adapted
to Foxtrot, but this applies to most other aggregation protocols as well (e.g. an application
designed for raw data would have to be changed to use averagedvalues correctly). The
current implementation provides the data in the standard Foxtrot format i.e. a series of
phase space regions. These can be combined to provide a complete picture of the network
without much effort.

One issue that can come up is that it is possible for the regions gathered by the sink
node to overlap. How an application wishes to deal with this problem may well vary.
The simplest options is to provide all of the possibilities for overlapping nodes e.g. a node
may be marked as either being between 20 and 21 degrees celsius, or being 30-31 degrees
celsius. Each measurement comes from a separate region, butbecause of the merging, it
is unknown which answer is correct. Foxtrot does guarantee that the correct value does
not lie outside the reported regions, but it is difficult to eliminate the wrong option. A
number of heuristics (“pick the smallest box”, “lower values are more likely”, etc) have
been tested against various application scenarios, but thebest option will be application-
specific. Alternately, the ranges can be simply averaged. This will provide less accurate
values at the uncertain points, but the values will represent a reasonable compromise
between the various choices. Notably, v.s. conventional averaging, Foxtrot does provide
information about which nodes have uncertain values, and which are certain, which may
also be of use in some applications.

6.4.4 Timing issues

The simplified protocol model detailed above does not deal with the timing issues com-
mon to all in-network aggregation protocols. The first majorproblem is that periodic
data measurement does not in general result in synchroniseddata. For example, if a par-
ticular application measures data every 10 minutes, and Node A’s data can be aggregated
with Node B’s data, we have no guarantee that the two nodes will measure data at the
same time, and therefore there could be up to a 10 minute delaybetween the measure-
ments from the different nodes. This means that to allow aggregation, a node will have
to delay the forwarding onwards of a packet for a much longer time than if the nodes are
synchronised.

In order to solve this problem, we assume the existence of a time synchronisation
protocol giving us synchronised cross-network timers (e.g. the Network Time protocol
from Section 2.6.2). This also allows for better results formany scientific applications,
as being able to know that the sensor data represents a snapshot of the monitored area
over a short period of time is generally more useful than a measurement spread over a
larger period, especially for cases where the source of the data values is changing rapidly.

123

6.5. RESULTS CHAPTER 6. AGGREGATION

The second problem is how much a protocol should delay beforesending a packet
onwards, and this has been dealt with in some detail in earlier work [2, 63, 125]. At the
moment, we are using values based on knowledge of the routingfor the whole network,
with a delay value based on the number of hops from the currentnode to the highest hop-
count child node in this part of the tree. Therefore, the basic in-network node protocol
described in Section 6.4.2 is expanded to note that we delay before passing any packets
(both locally generated and from other nodes) onto the routing protocol, and there is
therefore an additional timer event that signals when to give all currently locally stored
packets to the routing protocol for sending onwards to the next hop node.

Notably, Foxtrot only requires a solution to the problem of how long to delay a packet.
Our current solution to the delay problem also requires a solution to the synchronisation
problem, but other solutions can also be used with Foxtrot. Inaccurate answers will
result in less optimal results (because of later and/or lessaggregation) than correct ones,
but Foxtrot will still work.

6.5 Results

We tested Foxtrot in two ways; firstly in simulation against averaging and Q-Digest,
using a generic “smart” routing protocol; and secondly as a TinyOS implementation.

Our two metrics of interest were information loss and the number of transmitted
packets. Information loss was calculated as the average per-node difference between the
value received by the sink node and the true data value of a sensor at each source node.
To handle multiple overlapping regions with Foxtrot, we take the average of overlapped
regions (see Section 6.4.3). In all cases we ran the tests 20 times, and the data here is an
average of those results.

The simulations modelled a grid of nodes with temperature sensors, with a variety
of different floating point values for the temperature readings. All tests were done in
an area of 30m by 30m, with a 14m radio range. Radio links were assumed to be bi-
directional and perfect, and the average hop count to the sink node is ˜2.36 (2.8 with 25
nodes, through to 2.26 at 100). Q-Digest was run with the temperature values placed
into 0.1 degree “bins” (in order to generate the integer values required by Q-Digest from
our floating point temperature data), and Foxtrot with the maximum allowed temperature
merging range set to 1 degree. Our “smart” routing protocol uses shortest-hop routes,
with routing overhead being ignored.

We tested four scenarios for the dispersal of the temperature values:
1. Spread: Near-identical values, all nodes at values between 20 and 21 degrees

2. Sparse: 4% (1 in 25 nodes) of the nodes at between 30 and 31 degrees, all others
between 20 and 21 degrees.

3. Division: Nodes on the left hand side are between 20 and 21 degrees, andnodes on
the right hand side are between 30 and 31, with 50% of the totalnumber allocated
to each group.

4. Random: All nodes with random values between 20 and 31 degrees

124

CHAPTER 6. AGGREGATION 6.5. RESULTS

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 E
rr

or
 (

de
gr

ee
s

C
)

Node Count

Average
Q-Digest

Foxtrot

Figure 6.5: Scenario 1 (Spread)

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 E
rr

or
 (

de
gr

ee
s

C
)

Node Count

Average
Q-Digest

Foxtrot

Figure 6.6: Scenario 2 (Sparse)

125

6.5. RESULTS CHAPTER 6. AGGREGATION

 0

 1

 2

 3

 4

 5

 6

 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 E
rr

or
 (

de
gr

ee
s

C
)

Node Count

Average
Q-Digest

Foxtrot

Figure 6.7: Scenario 3 (Division)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 E
rr

or
 (

de
gr

ee
s

C
)

Node Count

Average
Q-Digest

Foxtrot

Figure 6.8: Scenario 4 (Random)

126

CHAPTER 6. AGGREGATION 6.5. RESULTS

The Spread and Sparse scenarios (Figures 6.5 and 6.6), are not particularly interesting,
but do show that in the situations where conventional techniques are able to achieve low
error values, Foxtrot is able to achieve identical performance. Q-Digest does quite badly
because it provides complete information for a series of values between 20-21 that we
end up having to average to get an estimate for any given node because of the lack of
location data. The averaging error of approximately 0.25 iswhat we would expect for
this scenario, as given a mid-point of 20.5, statistically speaking for half of all the input
values should be in the 20.25-20.75 range (less than 0.25 error) and half should be outside
that range (in either 20-20.25 or 20.75-21, both with greater than 0.25 error).

The Division scenario (Figure 6.7) provides us with more useful results - Foxtrot’s
error values remain low, but the error rates for averaging and Q-Digest have both risen
sharply. Similarly to Spread and Sparse, Q-Digest providestwo different series of values
for the overall network in this scenario, one at approximately 20 degrees, and a second at
30 degrees, reflecting an accurate picture of the network. However, due to the complete
lack of location information, we are again forced to use a weighted average of the two
series to derive estimates of the sensor data values, and so Q-Digest’s performance is
similar to averaging (˜5 degrees error). The difference here is that both averaging and Q-
Digest give inaccurate results, but with Q-Digest an end user would at least be aware of
the situation. With Foxtrot, we get two sets of values plus location information, allowing
accurate estimates of the data values, and maintaining the low error rates shown in the
first two scenarios.

Foxtrot does not perform quite as well in the Random scenario(Figure 6.8), but this is
the least likely of the scenarios to actually occur, given the correlation that tends to exist
within multiple nearby readings for most physical values used by sensor nodes. Despite
the low likelihood of this scenario, Foxtrot is still able toget lower error values than other
methods. In fact, one of the major sources of Foxtrot error isdue to the overlapping issues
described in Section 6.4.3, and this is also responsible forthe increasing error with more
nodes (which in most real world scenarios would be even less likely to have different
random values). We use averaging here to resolve ambiguities, and this gives us higher
errors than we might be able to achieve with more highly tunedmethods.

The trade off is that Foxtrot requires more packets to be sent, as it is not necessarily
able to always merge all data, which is shown in Figure 6.9. This graph shows average
packets sent per node, in order so we can more easily see trends in the data. Firstly,
Q-Digest and average both have exactly the same packet rate -1 packet per node, as they
merge everything. Foxtrot’s packet rate varies substantially depending on the scenario,
because the amount of unmergeable data in the network varies. For the Random scenario,
the packet rate is fairly similar to the values for no merging, with only a reduction of
3.7%. For scenarios 1-3 (Spread, Sparse, Division), the packet rate reduction is more
substantial, with an average of a 13% reduction in overall packet transmissions.

Different packet transmissions are not all the same in a real-world sensor network,
and spreading packet load over the entire network as opposedto having most of the
load near to the sink will also help to save power used by thosetransmissions due to to
less contention and reduced idle listening time. Figure 6.10 shows the reduction in the
number of transmitted packets v.s. non-aggregated scenarios for nodes within one hop of

127

6.5. RESULTS CHAPTER 6. AGGREGATION

 0

 0.5

 1

 1.5

 2

 2.5

 3

 20 30 40 50 60 70 80 90 100

T
ra

ns
m

itt
ed

 p
ac

ke
ts

/n
od

e

Node Count

Q-Digest/Average
No merging

Foxtrot (Spread/Sparse scenario)
Foxtrot (Division scenario)

Foxtrot (Random scenario)

Figure 6.9: Packet counts

 0

 10

 20

 30

 40

 50

 60

 20 30 40 50 60 70 80 90 100

%
 p

ac
ke

t r
at

e
re

du
ct

io
n

Node Count

Foxtrot (Spread/Sparse scenario)
Foxtrot (Division scenario)

Foxtrot (Random scenario)

Figure 6.10: Reduction in packets for sink neighbours

128

CHAPTER 6. AGGREGATION 6.6. SPARSE MAPPING

the sink node. In Spread, Sparse and Division, we achieved anaverage reduction of 19%
(with values up to 60% for some scenarios). The Random scenario had a 5.8% reduction.

To test that Foxtrot would work with actual node hardware, asopposed to just in
simulation environments, we also implemented Foxtrot for TinyOS. We used Guesswork
(from Chapter 3) to provide routing, but any other reliable sink-to-source routing algo-
rithm would be a viable candidate. The resulting program forour mica2 derived nodes
added up to a total of 44222 bytes of ROM. Getting exact valuesfor the Foxtrot modules
on their own is difficult, but the simple test program for the routing protocol takes up
38330 bytes in total, so a size for Foxtrot in the region of 6Kbytes is not unreasonable,
and as that would be only 4.6% of the total program space of 128Kbytes, we can con-
clude that Foxtrot will not cause too many problems for application designers in terms
of finding enough space on their nodes. Results from TOSSIM indicate that the TinyOS
implementation behaves similarly to our earlier simulation data, and early testing with
node hardware indicate that this still holds true for when tested on real hardware.

6.6 Sparse mapping

One of the remaining problems for Foxtrot using the phase-space representation is the
difficulties in merging physical locations. We show here some early work towards a
better solution, but this is still work in progress.

Sensor data tends to have a reasonable degree of correlation, and adjacent sensor
nodes will tend towards similar readings, which makes merging easily viable. Physical
locations tend to be less easy to merge. If we use a grid of nodes (as in Section 6.5),
then each node has multiple nodes nearby that have at least one co-ordinate in common,
and so merging the location data can be simple. If however therouting topology varies
significantly from Manhattan routing [83] (i.e. next-hop nodes are anything other than
the nodes directly north, south, east and west of the currentnode), then aggregating data
will again be difficult. The same situation occurs in networks with non-grid deployments
of nodes, e.g. the random deployments typical to most simulation scenarios.

We attempted to work around this in Section 6.3.1, and further improvements are
possible. One option is allowing for a certain amount of fuzziness in the notion of “equal”
values e.g. rounding all values to the nearest whole unit before considering merging. This
is however flawed, because it is effectively doing greedy merging (Section 6.3.1 has more
details on the problems with this), but trying to use it in only a limited way in order to
allow “enough” merging but not “too much”. We mention both ofthese terms in quotes,
because the definition of “too much” and “enough” are themselves very fuzzy concepts,
with the exact values being not only application dependant,but dependant on the state of
the data in the network. Selection of correct values is therefore generally non-feasible.

Sparse mapping is a way to provide a better representation ofthe stored data than
standard Foxtrot. We do this by extending the semantics for aregion from “these value
ranges apply across this entire region” to “these values only apply in certain parts of
a region”. This is done by adding an-dimensional (wheren is equal to the number
of physical dimensions used, 2 in our examples) bitmap grid to the packets. Each bit

129

6.6. SPARSE MAPPING CHAPTER 6. AGGREGATION

Algorithm 3 Bitmap semantics
The formulas here are for a 2-D grid, but can also be expanded to 3-D (which needs more
bits for a given fidelity of bitmap)

• A bitmap isBWxBH bits in size, describing a region from the point(Rx,RY)×(Rx+
Rw,RY +RH).

• RWandRH are the width and height of the region respectively.

• An individual bit covers a regionbw by bh, wherebw = RW/Bw andbH = RH/BH

• Each bitb(x,y) covers the region(Rx +(bw ∗ x),Ry +(bh ∗ y))× (Rx +(bw ∗ (x+
1)),Ry +(bh∗ (y+1)))

For example, if you have an 8x8 grid for a packet with the region (10,18)× (10,18),
thenRW = 8, RH = 8, BW = 8, BH = 8, bw = 1, bh = 1 and the first bitb(0,0) covers the
region(10,11)× (10,11).

in the bitmap represents a subsection of the physical regionspecified for the packet.
Algorithm 3 defines the basic semantics for a bitmap, and Algorithm 4 describes how to
merge bitmaps when their respective regions are merged. Additionally, single data points
start off as a completely filled grid (Figure 6.11a).

In Figure 6.11, we show a graphical representation of a series of example grids. 6.11a
shows the effective grid for the old “value ranges apply across the entire region” seman-
tics, where as 6.11b and 6.11c show two examples of original data (separate corners and
diagonals) that we could not represent accurately with standard Foxtrot. Figure 6.11b in
particular is a representation of a situation similar to Figure 6.1 on page 118.

(a) Full (b) Corners (c) Diagonal

Figure 6.11: Example sparse mapping bitmap visualisations

Given that we now have a better representation of data storedin a Foxtrot region,
we can re-evaluate the restrictions from Section 6.3.1, which were intended to reduce
information loss when only ranges were used to defined spacial information. One option

130

CHAPTER 6. AGGREGATION 6.7. CONCLUSIONS

Algorithm 4 Bitmap merging
To merge two bitmaps,A andB into a new bitmapC, using the definitions from Algo-
rithm 3:

1. The new bitmapC is initially empty, with all points set to 0.

2. For each non-zero bit inA, determine its covering region,Z

3. The corners ofZ are within the covered regions for 4 bits ofC. These 4 bits
describe a rectangle inC’s bitmap, designatedT. Some or all of these bits may be
the same bit (if, for exampleA represented a single point).

4. For every bit inT, set it to 1.

5. Repeat steps 2-4, but forB rather thanA.

would be to discard all of the spacial restrictions entirely, and some limited work has
been done in exploring the consequences of this, but more work is needed in this area
before it can be deployed further.

6.7 Conclusions

We have shown here that existing aggregation techniques aremuch more lossy than ear-
lier estimates may have thought, and that the error rates from these protocols may vary
widely over the lifetime of a network. To combat these problems, we proposed rethink-
ing the core concept of aggregation protocols, redefining them as a limited information
summary of the data in a network, focusing on the trade-off between information loss and
reduced packet rates. To aid this new definition, we defined the phase space abstraction
for representing data from a sensor network, incorporatingthe concept that not all data
points can necessarily always be merged. The phase space abstraction gives us a new
building block for use with data aggregation protocols.

We proposed Foxtrot, a limited information loss aggregation protocol, which uses the
improved phase space abstraction. Foxtrot aggregates sensor data without significant in-
formation loss, and without discarding location information. This increase in information
comes at a cost in additional packet transmissions v.s. morelossy aggregation protocols,
but the resulting information is much more reliable due to consistently lower error rates.

This reconsideration of the concept of aggregation protocols points the way towards
a new generation of sensor software, where application users will hopefully be willing
to use aggregation techniques. Currently, many scientific application users have been
cautious about the use of aggregation protocols, given the possibility of information loss.
Techniques like Foxtrot, with its focus on information lossreduction within application-
specific boundaries, may well help to persuade future projects to use aggregation without
fearing the loss of experimental data.

131

6.7. CONCLUSIONS CHAPTER 6. AGGREGATION

6.7.1 Future Work

Foxtrot is a first generation attempt at limited informationloss aggregation, and more
research is required on the topic of creating aggregation protocols with similar aims to
the ideas discussed in this chapter.

Foxtrot could also be expanded in a number of ways. The dynamic sources merging
algorithm is relatively conservative, and further exploration of the trade-off between ac-
curacy and greediness for merging may find better candidates. Our use of phase space
regions could also be expanded to cover other polytopes, which would allow the specify-
ing of larger regions with less of the greediness issues. TheSparse Mapping techniques
in Section 6.6 are also very early work, and need more exploration before they can be
integrated into deployed applications.

6.7.1.1 Routing Hints

The notion of correlation (whether multiple regions are mergeable) within Foxtrot could
also be used with some routing protocols to provide additional optimisations, specifically
when a locally held region is entirely enclosed by a region transmitted by another node.
In this case, it is possible to discard the local region as transmitting it would not change
the end results, thus further reducing required packet transmission rates.

Correlation could also be used to “hint” to the routing protocol that sending a packet
via a particular node would result in packet merging (and therefore reduced overall pack-
ets needed to be sent) and so this would be a good choice for thenext hop node. For
example, this could be done with Guesswork (Chapter 3) by reducing the ETX values for
correlated next-hop nodes discovered in the previous roundof aggregation, and would
create what would be effectively “data-aware clusters”, but without any cluster control
packet overhead at all.

6.7.1.2 Bounded-inaccuracy Foxtrot

Foxtrot (along with most other aggregation protocols) considers the raw data that it is
aggregating as a series of specific values. This is however only partially true, as many
sensors are at least somewhat inaccurate, and often information regarding their inaccura-
cies is provided in the manufacturer datasheets (e.g.±5%). This is generally ignored by
current WSN systems. Similarly, when using a localisation system like RSL (Chapter 4),
the provided location data is inaccurate, but has a limit on how inaccurate the value is
(its bounding box). Given that both have inaccuracy information available, we can there-
fore move from using single data values to “bounded inaccuracy” values, which consist
of a value and a range containing that value in which all possible other values for the
data point are also contained. As Foxtrot has a combined representation for sensor data
and location data, and the bounded inaccuracy values are notcurrently used, expanding
Foxtrot to use them would be a useful future extension of the work.

132

Chapter 7

Conclusions

”If you build a better mousetrap, someone will build a bettermouse” -
Anon

We set out in this thesis to re-examine the abstractions usedby various different classes of
typical WSN protocols; to see how the existing work in each field used abstraction and
what problems were caused by the (implicit and explicit) assumptions made by those
abstractions. We noted that WSNs are a hybrid field made from several predecessor
fields, each with different sets of requirements and priorities to WSNs, and that most of
our existing abstractions were inherited from those predecessor fields. To resolve some of
these problems, we built new abstractions that better represented the real problems facing
WSNs, both the problems that are WSN-specific (lack of resources, especially power)
and those that we inherited (e.g. unreliability of radio links). Using the new abstractions,
we then built new examples of protocols, and showed how they could improve on existing
protocols - either in terms of improved performance, or by providing new capabilities
utilising the improved abstractions.

In Chapter 2, we re-examined MAC protocol design, and came tothe conclusion that
the standard design specifications were insufficiently abstract, which resulted in MACs
that were much larger than required; were unable to reuse parts of the common code
that was duplicated; and limited the opportunities for expanding the designs to provide
extra capabilities for higher layers, because of the necessity of rebuilding any expansion
for every different MAC protocol. We instead described theλMAC framework, which
showed how to build MAC protocols that could reuse much larger collections of com-
mon code, giving a substantial reduction in the amount of code required to implement
a new protocol (e.g.λT-MAC was only 32% of the size of the original T-MAC imple-
mentation). This also allows MAC designers to abstract awayfrom problems like time
synchronisation, which were previously a major area of difficulty for MAC builders, but
with theλMAC framework time synchronisation is done automatically.

In Chapter 3, we looked at routing protocols, and found that the standard primitive
for routing protocols (single-hop reliable links) was an energy-inefficient abstraction for
WSNs with variable-quality radios. We separated the problems into two groups: the

133

CHAPTER 7. CONCLUSIONS

notion of N hops to the sink node was replaced with ETX (Expected TX cost)values,
and the single-hop unicast primitive was replaced with ExOR, which better utilises the
reality of WSNs as broadcast-based systems. We generalised ExOR to allow for new
metrics, as opposed to its original usage of shortest-path hop counts, and delaying metric
decisions. From generalised ExOR we created ExOR-ETX usingETX values and ExOR-
Bcast for reliable broadcast/flooding of values. We then used these new actions to build
Guesswork, an adaptive routing protocol that could work efficiently with a wide variety
of link qualities. Guesswork was able to use the delayed metric decisions of generalised
ExOR to delay the choice of best next-hop nodes until after packets have reached multiple
potential next-hop nodes, which improved reliability withunreliable links.

In Chapter 4, we looked at localisation protocols, and discovered that the building
block used by most localisation protocols (unreliable single distance values between
pairs of nodes) discarded too much information about the actual underlying statistics
of the sensors that provided the information, and was therefore a flawed abstraction. We
instead moved to the use of probability maps to provide an improved abstraction mapping
between incoming sensor values and the distance between nodes. Using the probability
maps, we then built RSL (Refined Statistic-based Localisation), which also used bound-
ing box information based on sanity boundaries for node locations. We also introduced
limited broadcast of generated “pseudo” anchors to solve the problems of high processing
time and dense anchor formations required by earlier work instatistic-based localisation.
We also explored the standard notion of anchor nodes, showedthat for most proposed
application scenarios that a mobile anchor node could be implemented for similar costs
to a single anchor, and that mobile anchors could be used to generate many “virtual”
anchors along a path. We showed data for RSL working with mobile anchors, providing
good localisation with the new abstractions.

In Chapter 5, we looked at motion detection. Normally, motion detection would ei-
ther be done with specialised hardware or with the aid of localisation techniques. Given
the probable absence of the former, and that we had redesigned the abstractions for lo-
calisation, we explored whether these abstractions could be used to do motion detection.
We looked first at working with the probability maps, rethought the localisation abstrac-
tions further in order to use them to build force equations for springs in a mass-spring
model, and used the mass-spring model to do motion detectionfor limited amounts of
motion. We then showed that the sanity constraints of the location bounding boxes could
be exploited to detect larger quantities of motion.

In Chapter 6, we looked at aggregation techniques. We found that the standard prob-
lem approached by most aggregation protocols is discovering better ways to distribute
various statistical functions (e.g. average, median, count of values exceeding a thresh-
old), and providing ways to manipulate the information for different application scenar-
ios. We discovered that considering standard statistical functions as a usable abstract
summary of data from a set of nodes did not match with the requirements of most sensor
networks, as most statistical techniques treat rare valuesas anomalies to be discarded, as
opposed to most WSN applications, where the anomalous valuesare the most important
(e.g. “which tree is on fire?”). We instead suggested the notion of aggregation proto-
cols as a “limited information summary”, and that “blind aggregation” of data points

134

CHAPTER 7. CONCLUSIONS 7.1. USEFULNESS OF SENSOR NETWORKS

without considering the values was flawed. We proposed a phase-space abstraction for
sensor data, showed how to merge data sets using this form, and noted when certain sets
should not be merged in order to preserve the different data values. This new abstrac-
tion also preserved location data, which was discarded by all previous WSN aggregation
protocols. We then described Foxtrot, which uses the phase-space techniques to build a
distributed aggregation protocol.

We believe that our study of these five different areas, showing issues across a wide
selection of the traditional design problems for sensor networks, is convincing evidence
that there were problems with the existing abstractions forWSNs, and that re-examining
the abstraction stack for WSNs results in improved abstactions and provides new ways
to think about the problems facing future research. We devised new “building block”
abstraction concepts for use with protocols in four of the areas (Generalised ExOR; prob-
ability maps; spring models for distance; phase space data representations), showed how
the old building blocks took away too much information (i.e.were too abstract), and gave
examples of how the new building blocks could be used to buildnew protocols. In Chap-
ter 2 we also showed that sometimes the problem can be that systems are insufficiently
abstract - demonstrating that abstraction problems can cutboth ways, and that protocol
designs can be both insufficiently abstract and too abstract.

7.1 Usefulness of sensor networks

One hope for this work is that the rethinking of the abstractions used by WSNs will allow
for further developments of the field as a distinct research area. Recently, there has been
some level of concern [45] that the eventual goals for WSNs of millions of very cheap
“disposable” nodes will not be feasible, citing minimum cost limits for core components
(especially sensors and batteries) even in quantities of tens of millions. If we take as
a given that we will be unable to create sufficiently low cost hardware to achieve the
end goals, then the resource restrictions that make this area distinct start to become less
important. If a node should be disposable then a 20 cent reduction in per-unit costs by
halving processor speed is vital, where as if we are paying 10euros or more per node
then saving 20 cents is less important, and so therefore we may be able to use much more
resources than we currently assume.

An important question appears from the realisation that ourcosts are greater than we
expected: what do we gain by trying to work with such resource-restricted systems, if the
economic benefits of resource restriction are no longer so great? One answer to that is
the work presented in this thesis, as the rethinking of the abstraction stack would be less
likely to be considered in resource-rich systems, especially given that a number of the
abstractions that we have taken apart (unicast inter-node links especially) come directly
from the resource-rich predecessors to WSNs, and so if they caused problems in those
fields they would have most likely been examined in those contexts.

There has been some work in resource-rich contexts related to the work here e.g.
ExOR [13], which we expanded in Chapter 3, was originally built for 802.11 networks,
aiming for higher bandwidth rather than energy efficiency, but in general in a resource-

135

7.2. FURTHER WORK CHAPTER 7. CONCLUSIONS

rich context the problems due to inaccurate abstractions are not as obvious, and can often
be ignored entirely. This ignorance comes at a cost in resources (processing time, power),
but as they are available in greater abundance, this is generally unnoticed.

The improvements we make here, despite the possibly limitedfeasibility of resource-
scarce WSNs in the long run, can still provide better results for resource-rich systems.
A reduction in resource costs, regardless of the relative magnitude of the potential gains,
is always useful. Additionally, giving new insights into the way we think about proto-
col design will help to provide new guides to future work and to entirely new areas of
research.

7.2 Further work

The work presented here is the first generation of protocols looking at the abstraction
stack in a new light, but they are only the beginning of what can be done. Further work
is needed both to discover better uses for the new abstractions, and to find further ab-
straction problems in the design space. The new abstractions proposed here may well
be proved in the future to be themselves flawed, and only a process of continual re-
examination of our assumptions can allow us to continue to achieve better results in the
future.

We show here a few additional common abstractions within WSNsthat still need
further work.

7.2.1 Layers

Indeed, the layered description that we have used to separate our work within this thesis is
an example of an abstraction that is often forgotten about. Cross-layer protocols address
this a little (e.g. LEACH [46] and D-MAC [75] are both MAC protocols that build rout-
ing information), but there is still the problem of what services a particular layer should
provide. Our MAC work here provides a Network Time mechanism(Section 2.6.2) for
use by other layers, but this is not common to most MAC protocols. Also, new sending
primitives (ExOR [13], Section 3.3.2; Anycast [93]) are notsupported by the “standard”
MAC abstraction, so how can users build portable systems on top of them? This also
occurs in other layers (does a routing protocol support an optimised “flooding” mecha-
nism? What additional information does a localisation protocol provide beyond single
point locations?) and so some work in improving the notion ofa layer is required.

One option here is to move from fixed abstractions, to the notion of capabilities.
For example, a MAC layer could say that it provides Broadcast, Unicast and Anycast; a
Routing layer may specify source-to-sink routing for up to 5sinks, plus 2-hop neighbour-
hood communication. This allows both for explicit expansion of the abstractions, and for
choosing appropriate other layers that have particular capabilities. Additionally, metric
attributes (“this layer requiresnKB of memory”, “O(n) messages setup overhead”, etc)
may also be possible, and allow for further improvements in the choices depending on
the application requirements.

136

CHAPTER 7. CONCLUSIONS 7.2. FURTHER WORK

How to specify these capabilities in a way that is both correct and useful is an open
question, as the more general issue of interface semantics is a long-running problem
within software engineering. It may be possible to partially solve this problem by lim-
iting the types of a module to the standard layer types, and only allowing a small set of
attributes to each different type of module, but this may well limit the usefulness of the
approach significantly.

7.2.2 Fuzzy neighbours

One of the conclusions that falls out of discarding the abstraction of reliable links is that
another core concept to many sensor network protocol layers- neighbour nodes - starts to
fall apart. Previously, a neighbour was considered as a binary relation - either two nodes
could communicate, or they could not. With unreliable links, a wider range of possi-
bilities for the concept of “neighbours” exists, as not onlydo we have communication
links where only a subset of messages get through, but also asymmetric links, where the
reliability may vary widely depending on which node initiates a transmission.

This leads to the question: under what circumstances is a node considered a neigh-
bour node? If a message has been seen “recently”? If it responds to all queries? The
correct answer to this will often vary in between different layers, and may well even
depend on the local topology around a node, as in situations where a node thinks it has
few neighbours it may wish to be more lenient with its decisions regarding which are
considered neighbours. Also, not all neighbours are equal,and protocols will need to
be aware of this when picking a “random neighbour” if they wish to have an efficient
implementation. Random neighbours are also difficult to select when the node density is
high (i.e. lots of potential neighbours), as only a subset will be capable of being stored
in a finite amount of memory, and deciding when to discard one neighbour in favour of
another may well also be protocol dependant.

One direction in which this could be taken is the notion of “fuzzy sets”, where each
member of the set has a probability value associated with it specifying the “grade of
membership” of an item, and this could potentially work wellwith the concept of unreli-
able links.

7.2.3 Topology randomisation

Most simulation environments specify a certain number of nodes randomly scattered
within a region of a specified size. One problem with this formation is that if the dis-
tribution is sufficiently random (which given that all of thelocations are generally being
created by the same pseudo-random number generator is a reasonable assumption, and is
in fact the basis for why “random” locations are chosen) is that the node density across
the area will be very even, especially as the number of nodes increases for a given size of
area. This is a problem for evaluating many WSN algorithms as their locality dependence
(discussed initially in Section 1.2.3, and further in the chapters on individual protocols)
means that the performance of a protocol is dependant on the density of nodes. This lack
of variety in the node density means that a protocol is only being tested at a small range

137

7.2. FURTHER WORK CHAPTER 7. CONCLUSIONS

of node densities, and although the standard approach of varying the number of nodes
in different experiments will test with different densities, in each scenario only a small
range in node density is present.

Moving to scenarios with a variety of node density variations i.e. not only uniform,
but other potential variants (random across a wide range, linear change in a particular
direction, etc), would help to create more trustworthy simulations. One of the major
problems for simulation environments is their level of accuracy v.s. real deployments,
and this is normally a trade-off between processing time andfidelity. Doing node density
variations would not require more processing time per simulation (although more simu-
lation runs may be required), merely a little more effort at topology generation time, and
the improvement in the trustability of the simulation data may well be significant.

138

Bibliography

[1] Sun SPOT system: Turning vision into reality. White Paper, June 2005.

[2] T. Abdelzaher, T. He, and J. Stankovic. Feedback controlof data aggregation in
sensor networks. InConference on Decision and Control, 2004.

[3] K. Akkaya and M. Younis. A survey on routing protocols forwireless sensor
networks.Ad Hoc Networks, 3(3):325–349, 2005.

[4] J. Al-Karaki and A. Kamal. Routing techniques in wireless sensor networks: a sur-
vey. Wireless Communications, IEEE [see also IEEE Personal Communications],
11(6):6–28, 2004.

[5] M. Ali, T. Suleman, and Z. A. Uzmi. MMAC: A mobility-adaptive, collision-free
mac protocol for wireless sensor networks. InProc. 24th IEEE Performance, Com-
puting, and Communications Conference (IPCCC’05), pages 401–407, Phoenix,
Arizona, USA, April 2005.

[6] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V.Naik, V. Mittal, H. Cao,
M. Demirbas, M. Gouda, et al. A line in the sand:a wireless sensor network for
target detection, classification, and tracking.Computer Networks, 46(5):605–634,
2004.

[7] Atmelc©. AVR 8-Bit RISC - Datasheets, 2005.

[8] S. Babu and J. Widom. Continuous queries over data streams. SIGMOD Rec.,
30(3):109–120, 2001.

[9] B. Bakshi, P. Krishna, N. Vaidya, and D. Pradhan. Improving performance of TCP
over wireless networks.17th International Conference on Distributed Computing
Systems (ICDCS), May, 1997.

[10] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H.Katz. A comparison
of mechanisms for improving TCP performance over wireless links. IEEE/ACM
Transactions on Networking, 5(6):756–769, 1997.

139

BIBLIOGRAPHY BIBLIOGRAPHY

[11] L. Balzano and R. Nowak. Blind calibration of sensor networks. Proceedings
of the 6th international conference on Information processing in sensor networks,
pages 79–88, 2007.

[12] S. Banerjee and S. Khuller. A clustering scheme for hierarchical control in multi-
hop wireless networks.INFOCOM 2001. Twentieth Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings. IEEE, 2, 2001.

[13] S. Biswas and R. Morris. Opportunistic routing in multi-hop wireless networks.
SIGCOMM Comput. Commun. Rev., 34(1):69–74, 2004.

[14] D. M. Blough and P. Santi. Investigating upper bounds onnetwork lifetime exten-
sion for cell-based energy conservation techniques in stationary ad hoc networks.
In MobiCom ’02: Proceedings of the 8th annual international conference on Mo-
bile computing and networking, pages 183–192, New York, NY, USA, 2002. ACM
Press.

[15] B. W. Boehm.Software Engineering Economics. Prentice Hall, Englewood Cliffs,
NJ, 1981.

[16] D. Braginsky and D. Estrin. Rumor routing algorthim forsensor networks. In
WSNA ’02: Proceedings of the 1st ACM international workshopon Wireless sen-
sor networks and applications, pages 22–31, New York, NY, USA, 2002. ACM
Press.

[17] N. Bulusu, J. Heidemann, V. Bychkovskiy, and D. Estrin.Density-adaptive bea-
con placement algorithms for localization in ad hoc wireless networks. InIEEE
Infocom 2002, New York, NY, June 2002.

[18] J. Burrell, T. Brooke, and R. Beckwith. Vineyard computing: sensor networks in
agricultural production.IEEE Pervasive Computing, 3(1):38–45, Jan-Mar 2004.

[19] S. Capkun, M. Hamdi, and J.-P. Hubaux. GPS-free positioning in mobile ad-hoc
networks.Cluster Computing, 5(2):157–167, Apr. 2002.

[20] K. Chintalapudi, T. Fu, J. Paek, N. Kothari, S. Rangwala, J. Caffrey, R. Govin-
dan, E. Johnson, and S. Masri. Monitoring civil structures with a wireless sensor
network. IEEE Internet Computing, 10(2):26–34, 2006.

[21] Chipcon AS. CC1000 Datasheet (rev. 2.3), 2005.

[22] V. Claesson, H. Lonn, and N. Suri. Efficient TDMA synchronization for dis-
tributed embedded systems.Reliable Distributed Systems, 2001. Proceedings.
20th IEEE Symposium on, pages 198–201, 2001.

[23] S. Coleri-Ergen and P. Varaiya. PEDAMACS: Power efficient and delay aware
medium access protocol for sensor networks.IEEE Trans. on Mobile Computing,
5(7):920–930, July 2006.

140

BIBLIOGRAPHY BIBLIOGRAPHY

[24] T. van Dam and K. Langendoen. An adaptive energy-efficient MAC protocol for
wireless sensor networks. In1st ACM Conf. on Embedded Networked Sensor
Systems (SenSys 2003), pages 171–180, Los Angeles, CA, USA, Nov. 2003.

[25] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A high-throughput path
metric for multi-hop wireless routing. InProceedings of the 9th ACM Interna-
tional Conference on Mobile Computing and Networking (MobiCom ’03), San
Diego, California, September 2003.

[26] D. S. J. De Couto, D. Aguayo, B. A. Chambers, and R. Morris. Performance of
multihop wireless networks: Shortest path is not enough. InProceedings of the
First Workshop on Hot Topics in Networks (HotNets-I), Princeton, New Jersey,
October 2002. ACM SIGCOMM.

[27] M. Ditzel and F. Elferink. Low-power radar for wirelesssensor networks.Radar
Conference, 2006. 3rd European, pages 139–141, 2006.

[28] L. Doherty, K. Pister, and L. E. Ghaoui. Convex positionestimation in wireless
sensor networks. InIEEE Infocom 2001, pages 1655–1663, Anchorage, AK, Apr.
2001.

[29] A. Dunkels, T. Voigt, and J. Alonso. Making TCP/IP Viable for Wireless Sensor
Networks. InProc. of the First European Workshop on Wireless Sensor Networks
(EWSN’04), Berlin, Germany, Jan. 2004.

[30] C. E. Dyreson. Information retrieval from an incomplete data cube. In T. M. Vi-
jayaraman, A. P. Buchmann, C. Mohan, and N. L. Sarda, editors, VLDB’96, Pro-
ceedings of 22th International Conference on Very Large Data Bases, September
3-6, 1996, Mumbai (Bombay), India, pages 532–543. Morgan Kaufmann, 1996.

[31] C. Ee, R. Fonseca, S. Kim, D. Moon, A. Tavakoli, D. Culler, S. Shenker, and
I. Stoica. A Modular Network Layer for Sensornets.Proceedings of the ACM
Symposium on Operating System Design and Implementation (OSDI), 2006.

[32] A. El-Hoiydi. Aloha with preamble sampling for sporadic traffic in ad hoc wireless
sensor networks. InIEEE International Conference on Communications (ICC),
New York, Apr. 2002.

[33] A. El-Hoiydi and J.-D. Decotignie. WiseMAC: An ultra low power MAC protocol
for the downlink of infrastructure wireless sensor networks. InProc. of the Ninth
Int. Symp. on Computers and Communications, 2004 (ISCC 2004), volume 1,
pages 244–251, July 2004.

[34] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel:An operating system
architecture for application-level resource management.In Symposium on Oper-
ating Systems Principles, pages 251–266, 1995.

141

BIBLIOGRAPHY BIBLIOGRAPHY

[35] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Nextcentury challenges:
Scalable coordination in sensor networks. In5th ACM/IEEE Int. Conf. on Mo-
bile Computing and Networks (MobiCom ’99), pages 263–270, Seattle, WA, Aug.
1999.

[36] A. Galstyan, B. Krishnamachari, K. Lerman, and S. Pattem. Distributed online
localization in sensor networks using a moving target. InProceedings of the third
international symposium on Information processing in sensor networks, pages 61–
70. ACM Press, 2004.

[37] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesC
language: A holistic approach to networked embedded systems. In ACM Conf.
on Programming Language Design and Implementation (PLDI), pages 1–11, San
Diego, CA, June 2003.

[38] M. Gerla, T. Kwon, and G. Pei. On demand routing in large ad hoc wireless
networks with passive clustering. InProceedings of IEEE WCNC 2000, Sept.
2000.

[39] D. Goense, J. Thelen, and K. Langendoen. Wireless sensor networks for precise
Phytophthora decision support. In5th European Conference on Precision Agri-
culture (5ECPA), Uppsala, Sweden, June 2005.

[40] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao,
F. Pellow, and H. Pirahesh. Data Cube: A Relational Aggregation Operator Gen-
eralizing Group-By, Cross-Tab, and Sub-Totals.Data Mining and Knowledge
Discovery, 1(1):29–53, 1997.

[41] I. Gupta, D. Riordan, and S. Sampalli. Cluster-head election using fuzzy logic
for wireless sensor networks.Communication Networks and Services Research
Conference, 2005. Proceedings of the 3rd Annual, pages 255–260, 2005.

[42] G. Halkes and K. Langendoen. Crankshaft: An Energy-Efficient MAC-Protocol
For Dense Wireless Sensor Networks.EWSN 2007: European conference on
Wireless Sensor Networks, Jan. 2007.

[43] M. Handy, M. Haase, and D. Timmermann. Low energy adaptive clustering hi-
erarchy with deterministic cluster-head selection. InProc. IEEE MWCN 2002,
Stockholm, 2002.

[44] S. Hedetniemi and A. L. Liestman. A survey of gossiping and broadcasting in
communication networks. InNetworks 18, pages 319–349, 1998.

[45] J. Heidemann. Sensornets: the Next Big Thing (broadening the definition of
sensornet research). In4th European Conference on Wireless Sensor Networks
(EWSN 2007), Jan. 2007.

142

BIBLIOGRAPHY BIBLIOGRAPHY

[46] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. An application-specific
protocol architecture for wireless microsensor networks.IEEE Transactions on
Wireless Communications, 01(4):660–670, Oct. 2002.

[47] J. Hightower and G. Borriello. Location systems for ubiquitous computing.IEEE
Computer, 34(8):57–66, Aug. 2001.

[48] J. Hill and D. Culler. Mica: a wireless platform for deeply embedded networks.
IEEE Micro, 22(6):12–24, Nov. 2002.

[49] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K.Pister. System ar-
chitecture directions for networked sensors.SIGARCH Comput. Archit. News,
28(5):93–104, 2000.

[50] L. van Hoesel and P. Havinga. A lightweight medium access protocol (LMAC)
for wireless sensor networks. In1st Int. Workshop on Networked Sensing Systems
(INSS 2004), Tokyo, Japan, June 2004.

[51] A. Howard, M. J. Mataríc, and G. S. Sukhatme. Relaxation on a mesh: a formalism
for generalized localization. InIEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1055 – 1060, Wailea, Hawaii, Oct 2001.

[52] IEEE standard 802.11. Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications for 802.11a and 802.11b, 1999.

[53] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann. Impact of network
density on data aggregation in wireless sensor networks.Distributed Computing
Systems, 2002. Proceedings. 22nd International Conference on, pages 457–458,
2002.

[54] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable
and robust communication paradigm for sensor networks. InMobile Computing
and Networking, pages 56–67, 2000.

[55] K. Jamieson, H. Balakrishnan, and Y. Tay. Sift: A MAC protocol for event-driven
wireless sensor networks. In3rd European Workshop on Wireless Sensor Networks
(EWSN’06), pages 260–275, Zurich, Switzerland, Feb. 2006.

[56] D. B. Johnson, D. A. Maltz, and J. Broch. DSR: the dynamicsource routing
protocol for multihop wireless ad hoc networks.Ad hoc networking, pages 139–
172, 2001.

[57] G. J. Johnson. Of metaphor and the difficulty of computerdiscourse.Commun.
ACM, 37(12):97–102, 1994.

[58] J. Kahn, R. Katz, and K. Pister. Next Century Challenges: Mobile Networking for
’‘Smart Dust”. In5th ACM/IEEE Int. Conf. on Mobile Computing and Networks
(MobiCom ’99), pages 271–278, Seatle, WA, Aug. 1999.

143

BIBLIOGRAPHY BIBLIOGRAPHY

[59] B. Karp and H. T. Kung. GPSR: greedy perimeter statelessrouting for wireless
networks. InMobile Computing and Networking, pages 243–254, 2000.

[60] V. A. Kaseva, M. J. Kohvakka, M. Kuorilehto, M. Hannikainen, and T. D.
Hamalainen. RF-Based Indoor Localization for Wireless Sensor Networks. Cur-
rently in submission to ”Cooperative Localization in Wireless Ad Hoc and Sensor
Networks”.

[61] T. Kijewski-Correa, M. Haenggi, and P. Antsaklis. Wireless Sensor Networks for
Structural Health Monitoring: A Multi-Scale Approach. InProceedings of the
17th Analysis and Computation Specialty Conference. ASCE, 2006.

[62] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-
ing. Science, Number 4598, 13 May 1983, 220, 4598:671–680, 1983.

[63] B. Krishnamachari, D. Estrin, and S. B. Wicker. The impact of data aggregation
in wireless sensor networks. InICDCSW ’02: 22nd International Conference on
Distributed Computing Systems, pages 575–578, Washington, DC, USA, 2002.
IEEE Computer Society.

[64] L. Krishnamurthy, R. Adler, P. Buonadonna, J. Chhabra,M. Flanigan, N. Kushal-
nagar, L. Nachman, and M. Yarvis. Design and deployment of industrial sensor
networks: Experiences from a semiconductor plant and the north sea. In3rd ACM
Conf. on Embedded Networked Sensor Systems (SenSys 2005), pages 64–75, San
Diego, CA, 2005.

[65] J. Krumm and E. Horvitz. LOCADIO: Inferring Motion and Location from Wi-Fi
Signal Strengths.mobiquitous, 00:4–13, 2004.

[66] J. Kulik, W. Heinzelman, and H. Balakrishnan. AdaptiveProtocols for Information
Dissemination in Wireless Sensor Networks. In5th ACM MOBICOM, Seattle,
WA, August 1999.

[67] S. Kumar, A. Arora, and T. Lai. On the lifetime analysis of always-on wireless
sensor network applications.Mobile Adhoc and Sensor Systems Conference, 2005.
IEEE International Conference on, pages 186–188, 2005.

[68] G. Lakoff. Contemporary Theory of Metaphor, volume Metaphor and Thought.
Cambridge University Press, 2nd edition, 1992.

[69] L. Lamport. Time, clocks, and the ordering of events in adistributed system.
Commun. ACM, 21(7):558–565, July 1978.

[70] K. Langendoen, A. Baggio, and O. Visser. Murphy loves potatoes: Experiences
from a pilot sensor network deployment in precision agriculture. In14th Int. Work-
shop on Parallel and Distributed Real-Time Systems (WPDRTS), Rhodes, Greece,
Apr. 2006.

144

BIBLIOGRAPHY BIBLIOGRAPHY

[71] K. Langendoen and G. Halkes. Energy-efficient medium access control. In R. Zu-
rawski, editor,Embedded Systems Handbook, pages 34.1 – 34.29. CRC press,
2005.

[72] K. Langendoen and N. Reijers. Distributed localization in wireless sensor net-
works: A quantitative comparison.Computer Networks, 43(4):500–518, 2003.

[73] Y. Li, W. Ye, and J. Heidemann. Energy and latency control in low duty cycle
MAC protocols. InProceedings of the IEEE Wireless Communications and Net-
working Conference, New Orleans, LA, USA, March 2005.

[74] K. Lorincz, D. Malan, T. Fulford-Jones, A. Nawoj, A. Clavel, V. Shnayder,
G. Mainland, M. Welsh, and S. Moulton. Sensor networks for emergency re-
sponse: challenges and opportunities.Pervasive Computing, IEEE, 3(4):16 – 23,
2004.

[75] G. Lu, B. Krishnamachari, and C. Raghavendra. An adaptive energy-efficient and
low-latency MAC for data gathering in sensor networks. InInt. Workshop on
Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks(WMAN), Santa
Fe, NM, Apr. 2004.

[76] G. MacGougan, G. Lachapelle, R. Klukas, K. Siu, L. Garin, J. Shewfelt, and
G. Cox. Performance analysis of a stand-alone high-sensitivity receiver. GPS
Solutions, 6(3):179–195, 2002.

[77] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: a tiny aggre-
gation service for ad-hoc sensor networks.SIGOPS Oper. Syst. Rev., 36(SI):131–
146, 2002.

[78] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB: an ac-
quisitional query processing system for sensor networks.ACM Trans. Database
Syst., 30(1):122–173, 2005.

[79] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, andJ. Anderson. Wireless
sensor networks for habitat monitoring. InFirst ACM Int. Workshop on Wireless
Sensor Networks and Application (WSNA), pages 88–97, Atlanta, GA, Sept. 2002.

[80] M. S. Malone. Moore’s Second Law.Wired, Apr. 2004.

[81] J. Martyna. Fuzzy Reinforcement Learning for Routing in Wireless Sensor Net-
works. InComputational Intelligence, Theory and Applications, pages 637–645.
Springer, 2006.

[82] S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, and R. Wang. TCP westwood:
Bandwidth estimation for enhanced transport over wirelesslinks. Proceedings
of the 7th annual international conference on Mobile computing and networking,
pages 287–297, 2001.

145

BIBLIOGRAPHY BIBLIOGRAPHY

[83] N. Maxemchuk. Routing in the Manhattan Street Network.IEEE Transactions on
Communications, 35(5):503–512, 1987.

[84] D. Mills. Network Time Protocol (Version 3) Specification, Implementation and
Analysis. RFC 1305, Mar. 1992.

[85] K. Muthukrishnan, M. Lijding, N. Meratnia, and P. Havinga. Sensing motion
using spectral and spatial analysis of WLAN RSSI. In2nd European Conference
on Smart Sensing and Context (EuroSSC 2007), Oct. 2007.

[86] D. Niculescu and B. Nath. Ad-hoc positioning system. InIEEE GlobeCom, pages
2926–2931, Nov. 2001.

[87] D. Niculescu and B. Nath. Trajectory based forwarding and its applications. In
MobiCom ’03: Proceedings of the 9th annual international conference on Mobile
computing and networking, pages 260–272, New York, NY, USA, 2003. ACM
Press.

[88] L. Ohno-Machado et al. SMART: Scalable Medical Alert and Response Technol-
ogy. http://smart.csail.mit.edu/.

[89] T. Parker and K. Langendoen. Refined statistic-based localisation for ad-hoc sen-
sor networks. InIEEE Workshop on Wireless Ad Hoc and Sensor Networks (asso-
ciated with Globecom 2004), Dallas, TX, Nov. 2004.

[90] T. Parker and K. Langendoen. Guesswork: Robust routingin an uncertain world.
In 2nd IEEE Conf. on Mobile Ad-hoc and Sensor Systems (MASS 2005), Washing-
ton, DC, Nov. 2005.

[91] T. Parker and K. Langendoen. Adumbrate: Motion detection with unreliable range
data. In4th Int. Workshop on Networked Sensing Systems (INSS 2007), pages 221–
228, Braunschweig, Germany, June 2007.

[92] T. Parker and K. Langendoen. Foxtrot: phase space data representation for
correlation-aware aggregation. InFourth IEEE Conf. on Sensor, Mesh, and Ad
Hoc Communications and Networks (SECON), San Diego, CA, June 2007.

[93] C. Partridge, T. Mendez, and W. Milliken. Host Anycasting Service. RFC 1546
(Informational), Nov. 1993.

[94] P. Pathirana, N. Bulusu, A. Savkin, and S. Jha. Node localization using mobile
robots in delay-tolerant sensor networks.IEEE Transactions on Mobile Comput-
ing, 4(3):285–296, 2005.

[95] G. Pei and C. Chien. Low power TDMA in large wireless sensor networks. In
Military Communications Conference (MILCOM 2001), volume 1, pages 347–
351, Vienna, VA, Oct. 2001.

146

BIBLIOGRAPHY BIBLIOGRAPHY

[96] C. E. Perkins, E. M. Belding-Royer, and S. Das. Ad hoc on-demand distance
vector (AODV) routing. RFC 3561, IETF Network Working Group, July 2003.

[97] C. E. Perkins and P. Bhagwat. Highly Dynamic Destination-Sequenced Distance-
Vector Routing (DSDV) for Mobile Computers. InACM SIGCOMM’94 Confer-
ence on Communications Architectures, Protocols and Applications, pages 234–
244, 1994.

[98] C. E. Perkins and E. M. Royer. Ad-hoc On-Demand DistanceVector Routing.
In 2nd IEEE Workshop on Mobile Computing Systems and Applications, WMCSA
’99, February 25-26, 1999, New Orleans, Lousiana, USA, pages 90–100. IEEE,
IEEE, February 1999.

[99] J. Polastre and D. Culler. B-MAC: An adaptive CSMA layerfor low-power oper-
ation. Technical Report cs294-f03/bmac, UC Berkeley, Dec.2003.

[100] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, and I. Stoica. Unifying
link abstraction for wireless sensor networks. In3rd ACM Conf. on Embedded
Networked Sensor Systems (SenSys 2005), San Diego, CA, Nov. 2005.

[101] J. Postel. Transmission Control Protocol. RFC 793 (Standard), Sept. 1981. Up-
dated by RFC 3168.

[102] N. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller. Anchor-Free Distributed
Localization in Sensor Networks. Technical Report #892, MIT Laboratory for
Computer Science, Apr. 2003.

[103] L. Qiu, Y. R. Yang, Y. Zhang, and H. Xie. On Self AdaptiveRouting in Dynamic
Environments - An Evaluation and Design Using a Simple, Probabilistic Scheme.
In Proceedings of the 12th IEEE International Conference on Network Protocols
(ICNP ’04), pages 12–23. IEEE Computer Society, 2004.

[104] V. Rajendran, K. Obraczka, and J. Garcia-Luna-Aceves. Energy-efficient,
collision-free medium access control for wireless sensor networks. In1st ACM
Conf. on Embedded Networked Sensor Systems (SenSys 2003), pages 181–192,
Los Angeles, CA, Nov. 2003.

[105] T. S. Rappaport.Wireless Communications, Principles and Practice. Prentice
Hall, 1996.

[106] R. Rashid, D. Julin, D. Orr, R. Sanzi, R. Baron, A. Forin, D. Golub, and M. B.
Jones. Mach: a system software kernel. InProceedings of the 1989 IEEE Interna-
tional Conference, COMPCON, pages 176–178, San Francisco, CA, USA, 1989.
IEEE Comput. Soc. Press.

[107] M. J. Reddy.The Conduit Metaphor, volume Metaphor and Thought. Cambridge
University Press, 1st edition, 1979.

147

BIBLIOGRAPHY BIBLIOGRAPHY

[108] N. Reijers, G. Halkes, and K. Langendoen. Link layer measurements in sensor
networks. In1st IEEE Conf. on Mobile Ad-hoc and Sensor Systems (MASS 2004),
Fort Lauderdale, FL, Oct. 2004.

[109] J. Reimer. The power of Sun in a big Blackbox.Ars Technica, 3 Apr. 2007.

[110] RFM. TR1001 868.35 MHz Hybrid Tranceiver.

[111] M. Ringwald and K. R̈omer. BitMAC: a deterministic, collision-free, and robust
MAC protocol for sensor networks. InProc. IEEE European Workshop on Wire-
less Sensor Networks (EWSN) 2005, pages 57–69, Istanbul, Turkey, Jan. 2005.

[112] L. G. Roberts. Aloha packet system with and without slots and capture.SIG-
COMM Comput. Commun. Rev., 5(2):28–42, 1975.

[113] S. Roumeliotis and G. Bekey. Collective localization: a distributed Kalman filter
approach tolocalization of groups of mobile robots.Robotics and Automation,
2000. Proceedings. ICRA’00. IEEE International Conference on, 3, 2000.

[114] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems.IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), 11:329–350, 2001.

[115] C. Savarese, K. Langendoen, and J. Rabaey. Robust positioning algorithms for
distributed ad-hoc wireless sensor networks. InUSENIX technical annual confer-
ence, pages 317–328, Monterey, CA, June 2002.

[116] A. Savvides, H. Park, and M. Srivastava. The Bits and Flops of the n-hop Multi-
lateration Primitive for Node Localization Problems. InFirst ACM Int. Workshop
on Wireless Sensor Networks and Application (WSNA), pages 112–121, Atlanta,
GA, Sept. 2002.

[117] E. Sazonov, K. Janoyan, and R. Jha. Wireless intelligent sensor network for au-
tonomous structural health monitoring.Smart Structures/NDE 2004, 2004.

[118] Y. Shang and W. Ruml. Improved MDS-based localization. INFOCOM 2004.
Twenty-third Annual Joint Conference of the IEEE Computer and Communica-
tions Societies, 4, 2004.

[119] V. Shnayder, B. Chen, K. Lorincz, T. R. F. Fulford-Jones, and M. Welsh. Sensor
networks for medical care. Technical Report TR-08-05, Harvard University, April
2005.

[120] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. Medians and beyond:
new aggregation techniques for sensor networks. InSenSys ’04: Proceedings of
the 2nd international conference on Embedded networked sensor systems, pages
239–249, New York, NY, USA, 2004. ACM Press.

148

BIBLIOGRAPHY BIBLIOGRAPHY

[121] M. Sichitiu and V. Ramadurai. Localization of WirelessSensor Networks with a
Mobile Beacon. Technical Report TR-03/06, Center for Advances Computing and
Communications (CACC), Raleigh, NC, July 2003.

[122] S. Simic and S. Sastry. Distributed localization in wireless ad hoc networks. Tech-
nical Report UCB/ERL M02/26, UC Berkeley, 2002.

[123] G. Simon, M. Maroti, A. Ledeczi, G. Balogh, B. Kusy, A. Nadas, G. Pap, J. Sallai,
and K. Frampton. Sensor network-based countersniper system. In 2nd ACM Conf.
on Embedded Networked Sensor Systems (SenSys 2004), pages 1–12, Baltimore,
MD, Nov. 2004.

[124] J. Sobrinho and A. Krishnakumar. Real-time traffic over the IEEE 802.11 medium
access control layer.Bell Labs Technical Journal, 10:173, 1996.

[125] I. Solis and K. Obraczka. The impact of timing in data aggregation for sensor
networks. InIn Proc. of the IEEE International Conference on Communications
(ICC), 2004, 2004.

[126] J. Spolsky. The Law of Leaky Abstractions, 11 Nov. 2002.
http://www.joelonsoftware.com/articles/LeakyAbstractions.html.

[127] K.-F. Ssu, C.-H. Ou, and H. C. Jiau. Localization with mobile anchor points
in wireless sensor networks.Vehicular Technology, IEEE Transactions on,
54(3):1187–1197, 2005.

[128] L. Stein. Challenging the Computational Metaphor: Implications for How We
Think. Cybernetics and Systems, 30(6):473–507, Aug. 1999.

[129] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. InProceedings of
the ACM SIGCOMM ’01 Conference, San Diego, California, August 2001.

[130] G. Sun and W. Guo. Comparison of distributed localization algorithms for sensor
network with a mobile beacon.Networking, Sensing and Control, 2004 IEEE
International Conference on, 1, 2004.

[131] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler. Lessons from a sensor
network expedition. InProc. EWSN 2004, Berlin, Germany, Jan. 2004.

[132] M. A. Taleghan, A. Taherkordi, and M. Sharifi. Quality of Service Support in
Distributed Sink-Based Wireless Sensor Networks. In2nd IEEE International
Conference on Information and Communication Technologies: from Theory to
Applications (ICTTA ’06), Apr. 2006.

[133] Texas Instruments.MSP430x1xx Family User’s Guide. SLAU049B.

149

BIBLIOGRAPHY BIBLIOGRAPHY

[134] J. Thelen, D. Goense, and K. Langendoen. Radio wave propagation in potato
fields. In First workshop on Wireless Network Measurements (co-located with
WiOpt 2005), Riva del Garda, Italy, Apr. 2005.

[135] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust Monte Carlo localization
for mobile robots.Artificial Intelligence, 128(1–2):99–141, May 2001.

[136] F. Tobagi and L. Kleinrock. Packet Switching in Radio Channels: Part II–the
Hidden Terminal Problem in Carrier Sense Multiple-Access and the Busy-Tone
Solution.IEEE Transactions on Communications, COM-23(12):1417–1433, Dec.
1975.

[137] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess, T. Daw-
son, P. Buonadonna, D. Gay, and W. Hong. A Macroscope in the Redwoods. In
3rd ACM Conf. on Embedded Networked Sensor Systems (SenSys 2005), pages
51–63, San Diego, CA, 2005.

[138] A. Varga. The OMNeT++ discrete event simulation system. In European Simula-
tion Multiconference (ESM’2001), Prague, Czech Republic, June 2001.

[139] E. W. Weisstein. Circle-Circle Intersection.
http://mathworld.wolfram.com/Circle-CircleIntersection.html. From Math-
World - A Wolfram Web Resource.

[140] D. A. Wheeler. SLOCCount. http://www.dwheeler.com/sloc/, 2001.

[141] K. Whitehouse and D. Culler. Callibration as parameterestimation in sensor net-
works. InFirst ACM Int. Workshop on Wireless Sensor Networks and Application
(WSNA), pages 59–67, Atlanta, GA, Sept. 2002.

[142] Wikipedia. Central limit theorem — Wikipedia, The FreeEncyclopedia, 2006.
[Online; accessed 6-December-2006].

[143] Wikipedia. Phase space — Wikipedia, The Free Encyclopedia, 2006. [Online;
accessed 6 December 2006].

[144] Wikipedia. On-off keying — wikipedia, the free encyclopedia, 2007. [Online;
accessed 19 September 2007].

[145] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of reliable
multihop routing in sensor networks. In1st ACM Conf. on Embedded Networked
Sensor Systems (SenSys 2003), pages 14–27, Los Angeles, CA, Nov. 2003.

[146] G. Xylomenos, G. Polyzos, P. Mahonen, and M. Saaranen.TCP performance
issues over wireless links.Communications Magazine, IEEE, 39(4):52–58, 2001.

[147] W. Ye, J. Heidemann, and D. Estrin. An energy-efficientMAC protocol for wire-
less sensor networks. In21st Conference of the IEEE Computer and Communi-
cations Societies (INFOCOM), volume 3, pages 1567–1576, New York, NY, June
2002.

150

BIBLIOGRAPHY BIBLIOGRAPHY

[148] W. Ye, J. Heidemann, and D. Estrin. Medium access control with coordinated,
adaptive sleeping for wireless sensor networks.ACM/IEEE Transactions on Net-
working, 12(3):493–506, June 2004. A preprint of this paper was available as
ISI-TR-2003-567.

[149] O. Younis and S. Fahmy. HEED: A hybrid, energy-efficient, distributed clustering
approach for ad hoc sensor networks.IEEE Transactions on Mobile Computing,
03(4):366–379, Oct. 2004.

[150] L. A. Zadeh.Fuzzy Sets, volume 8 ofInformation and Control, pages 338 – 353.
1965.

[151] X. Zeng, R. Bagrodia, and M. Gerla. GloMoSim: a libraryfor parallel simula-
tion of large-scale wireless networks. InWorkshop on Parallel and Distributed
Simulation, pages 154–161, 1998.

[152] H. Zhang and J. Hou. On deriving the upper bound ofα-lifetime for large sensor
networks. InMobiHoc ’04: Proceedings of the 5th ACM international symposium
on Mobile ad hoc networking and computing, pages 121–132, New York, NY,
USA, 2004. ACM Press.

[153] J. Zhao and R. Govindan. Understanding Packet Delivery Performance In Dense
Wireless Sensor Networks. In1st ACM Conf. on Embedded Networked Sensor
Systems (SenSys 2003), pages 1–13, Los Angeles, CA, Nov. 2003.

[154] T. Zheng, S. Radhakrishnan, and V. Sarangan. PMAC: an adaptive energy-efficient
MAC protocol for wireless sensor networks. In19th IEEE Int. Parallel and Dis-
tributed Processing Symposium (IPDPS 2005), pages 65–72, Denver, CO, Apr.
2005.

[155] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic. Impact of radio irregularity
on wireless sensor networks. InProceedings of the 2nd international conference
on Mobile systems, applications, and services, pages 125–138. ACM Press, 2004.

151

BIBLIOGRAPHY BIBLIOGRAPHY

152

Summary

Sensor networks is a field descended from a number of other fields, primarily distributed
systems, but then with additional restrictions and problems (power limits; physical local-
ity issues) and new design ideas (source-to-sink routing; data aggregation). The creation
of this new field involved re-using a number of the assumptions and abstractions that
defined the earlier fields. In this thesis, we show how these abstractions have influenced
sensor network protocol designs, note a number of problems with the abstractions, and
define new protocols working with improved abstractions.

Abstraction is at the core of everything that we do, precisely because it is at the core
of language. What we do, how it is described to others, and whatthey derive from what
we have described are all littered with abstractions. The major reasoning behind the use
of abstractions is that there is simply too much informationin most situations and an
abstraction provides the important details of a situation without burying ourselves in data
e.g. thinking of a collection of molecules as a gas, liquid orsolid, and considering the
collection as a single object, rather than thinking about the individual information about
each and every molecule. Furthermore, Reddy [107] and Lakoff [68] showed that our
abstractions are built upon common experiences of physicalevents.

Computer science, especially the software elements of it (which are arguably the
vast majority of the field of computer science) is a collection of interrelated abstractions.
Many of the physical events associated with abstractions for computing concepts involve
one or more people doing a task that we would like the computerto do, e.g. the common
abstractions of a “stack” of objects being like a stack of cards; the notion of a “queue”
of tasks being like a queue of people; the entire field of “agent-based” computing. For
simple examples like queues and stacks, the connection between the abstract concept
and the physical example is obvious and clear. Assumptions and extrapolations based on
knowledge of characteristics of the physical example have direct analogs in the abstract
concept e.g. we can add more people to a queue, remove people from the front of a queue,
and the same problems occur with multiple queues (some queues may empty faster than
others for example) in both the abstraction and the physicalexample.

Wireless Sensor Networks (WSNs) are also subject to an abstracted model of think-
ing, but there is a problem that the abstractions in common use for WSNs have been

153

copied from the predecessor fields, with little examinationor testing as to whether the
abstractions are still a valid representation of the actualsituation, given the new restric-
tions of WSNs e.g. power limits. This lack of checking for validity of the abstractions
has led to inefficient protocol design when compared to the possibilities with improved
abstractions. We therefore set out to show this in a variety of types of WSN protocols,
and to build better abstractions for each protocol type.

In Chapter 2, we re-examined MAC protocol design, and came tothe conclusion that
the standard design specifications were insufficiently abstract, which resulted in MACs
that were much larger than required; were unable to reuse parts of the common code
that was duplicated; and limited the opportunities for expanding the designs to provide
extra capabilities for higher layers, because of the necessity of rebuilding any expansion
for every different MAC protocol. We instead described theλMAC framework, which
showed how to build MAC protocols that could reuse much larger collections of com-
mon code, giving a substantial reduction in the amount of code required to implement
a new protocol (e.g.λT-MAC was only 32% of the size of the original T-MAC imple-
mentation). This also allows MAC designers to abstract awayfrom problems like time
synchronisation, which were previously a major area of difficulty for MAC builders, but
with theλMAC framework time synchronisation is done automatically.

In Chapter 3, we looked at routing protocols, and found that the standard primitive
for routing protocols (single-hop reliable links) was an energy-inefficient abstraction for
WSNs with variable-quality radios. We separated the problems into two groups: the
notion of N hops to the sink node was replaced with ETX (Expected TX cost)values,
and the single-hop unicast primitive was replaced with ExOR, which better utilises the
reality of WSNs as broadcast-based systems. We generalised ExOR to allow for new
metrics, as opposed to its original usage of shortest-path hop counts, and delaying metric
decisions. From generalised ExOR we created ExOR-ETX usingETX values and ExOR-
Bcast for reliable broadcast/flooding of values. We then used these new actions to build
Guesswork, an adaptive routing protocol that could work efficiently with a wide variety
of link qualities. Guesswork was able to use the delayed metric decisions of generalised
ExOR to delay the choice of best next-hop nodes until after packets have reached multiple
potential next-hop nodes, which improved reliability withunreliable links.

In Chapter 4, we looked at localisation protocols, and discovered that the primitive
information expected by most localisation protocols (unreliable single distance values be-
tween pairs of nodes) discarded a lot of information about the actual underlying statistics
of the sensors that provided the information. We instead moved to the use of probabil-
ity maps to better describe mapping between incoming sensorvalues and the distance
between nodes. Using the probability maps, we then built RSL(Refined Statistic-based
Localisation), which also used bounding box information based on sanity boundaries for
node locations. We also introduced limited broadcast of generated “pseudo” anchors to
solve the problems of high processing time and dense anchor formations required by
earlier work in statistic-based localisation. We also explored the standard notion of an-
chor nodes, showed that for most proposed application scenarios that a mobile anchor
node could be implemented for similar costs to a single anchor, and that mobile anchors
could be used to generate many “virtual” anchors along a path. We showed data for RSL

154

working with mobile anchors, providing good localisation with the new abstractions.
In Chapter 5, we looked at motion detection. Normally, motion detection would ei-

ther be done with specialised hardware or with the aid of localisation techniques. Given
the probable absence of the former, and that we had redesigned the abstractions for local-
isation, we explored whether these abstractions could be used to do motion detection. We
looked first at working with the probability maps, used them to build force equations for
springs in a mass-spring model, and used the mass-spring model to do motion detection
for limited amounts of motion. We then showed that the sanityconstraints of the location
bounding boxes could be exploited to detect larger quantities of motion.

In Chapter 6, we looked at aggregation techniques. We found that the standard prob-
lem approached by most aggregation protocols is discovering better ways to distribute
various statistical functions (e.g. average, median, count of values exceeding a thresh-
old), and providing ways to manipulate the information for different application scenar-
ios. We discovered that considering standard statistical functions as a usable abstract
summary of data from a set of nodes did not match with the requirements of most sensor
networks, as most statistical techniques treat rare valuesas anomalies to be discarded, as
opposed to most WSN applications, where the anomalous valuesare the most important
(e.g. “which tree is on fire?”). We instead suggested the notion of aggregation protocols
as a “limited information summary”, and that “blind aggregation” of data points without
considering the values was flawed. We proposed a phase-spacerepresentation for sensor
data, showed how to merge data sets using this form, and notedwhen certain sets should
not be merged in order to preserve the different data values.This new formation also pre-
served location data, which was discarded by all previous WSNaggregation protocols.
We then described Foxtrot, which uses the phase-space techniques to build a distributed
aggregation protocol.

We believe that our study of these five different areas, showing issues across a wide
selection of the traditional design problems for sensor networks, is convincing evidence
that there were problems with the existing abstractions forWSNs, and that re-examining
the abstraction stack for WSNs results in improved abstractions and provides new ways
to think about the problems facing future research.

155

156

Samenvatting

Sensor netwerken stammen af van verschillende andere onderzoeksgebieden, in het bij-
zonder gedistribueerde systemen, maar onderscheiden zichdoor aanvullende randvoor-
waarden (oa. minimaal energieverbruik), extra problemen (oa. plaatsbepaling) en nieuwe
technieken (oa. source-to-sink routering en data aggregatie). Bij het ontwikkelen van
dit nieuwe onderzoeksgebied is veelal gebruik gemaakt van bestaande abstracties en in-
terfaces. In dit proefschrift betogen we dat deze abstracties ongewild de ontwikkeling
van sensor netwerken beperkt hebben, analyseren we de onderliggende misvattingen, en
presenteren verbeterde abstracties die verwerkt zijn in een reeks nieuwe protocollen voor
het efficïent gebruik van sensor netwerken.

Abstractie ligt aan de basis van alles dat we doen, omdat het een essentieel onderdeel
van taal is. Wat we doen, hoe we dat communiceren aan anderen,en wat die daarvan
oppikken wordt grotendeels bepaald door het gebruik van abstracties. Dit gebruik is
eenvoudig te verklaren door het feit dat een overvloed aan informatie meestal contra
productief werkt en dat abstracties voorkomen dat we ons verliezen in de details. Zo
helpt het om een verzameling moleculen alséén geheel dat wil zeggen een gas, vloeistof
of object te beschouwen in plaats van de eigenschappen af te leiden uit de interacties
tussen de individuele moleculen. De abstracties die we gebruiken zijn vaak gebaseerd op
gemeenschappelijke ervaringen met de fysieke wereld om onsheen [68, 107]

De informatica is in essentie een verzameling samenhangende abstracties. Dit geldt
met name voor de software, die in toenemende mate belangrijker wordt dan de on-
derliggende hardware. Veel van de abstracties die in de informatica gebruikt worden
zijn ontleend aan de dagelijkse praktijk en de activiteitendaarin die we graag door een
computer zouden laten uitvoeren. Bijvoorbeeld, het concept “queue” is naar analogie van
een rij mensen wachtend voor de kassa, het begrip “stack” komt overeen met een stapel
kaarten, en het hele onderzoeksveld van agent systemen heeft een duidelijke parallel met
de functies die een reisagent voor ons verleent. Kennis van de fysieke eigenschappen
en natuurkundige wetten die gelden in de wereld om ons heen laten zich vaak letterlijk
vertalen naar de abstracte concepten die we gebruiken in de informatica. Rijen worden
langer als er meer mensen moeten wachten, degene die vooraanstaat is het eerst aan de
beurt, en als we moeten kiezen uit meerdere rijen is er altijdhet probleem dat de ene
sneller geholpen wordt dan de ander.

157

Ook in Wireless (draadloze) Sensor Netwerken (WSN) wordt er ruimhartig gebruik
gemaakt van abstracties om de complexiteit van zulke grootschalige systemen het hoofd
te bieden. Het probleem echter is dat de abstracties veelal rechtstreeks overgenomen zijn
uit reeds ontwikkelde systemen en methodieken zonder af te vragen en/of te verifïeren
of ze nog steeds van toepassing zijn gegeven de nieuwe randvoorwaarden in het WSN
domein. Dit klakkeloos gebruik van oude abstracties kan leiden tot inefficïenties die ver-
meden zouden kunnen worden door de juiste abstracties te gebruiken. In dit proefschrift
hebben we daarom een breed scala aan WSN protocollen, en onderliggende abstrac-
ties, onderzocht en waar mogelijk aangepaste abstracties gëıntroduceerd om te komen
tot betere protocollen.

In hoofdstuk 2 hebben we kritisch gekeken naar hoe de huidigeMAC protocollen
voor WSN gestructureerd zijn, en geconcludeerd dat er te weinig gebruik gemaakt is
van gemeenschappelijke abstracties waardoor functionaliteit zoals time synchronisation
in ieder MAC protocol opnieuw geı̈mplementeerd is. Het gebrek aan abstractie bemoei-
lijkt ook het uitbreiden van bestaande protocollen met nieuwe functionaliteit ten behoeve
van hogere lagen in de protocol stack omdat dat impliceert dat alle MAC’s afzonderlijk
aangepast moeten worden. We hebben daarom hetλMAC framework gedefinïeerd dat
laat zien hoe MAC protocollen geı̈mplementeerd kunnen worden middels een gelaagde,
interne structuur die het ontwikkelen van nieuwe MAC protocollen aanzienlijk versnelt
omdat grote delen van de framework implementatie hergebruikt kunnen worden. Zo is
de λT-MAC implementatie slechts 32% van de grootte van de originele T-MAC code.
Verder kunnen MAC ontwikkelaars op een hoger abstractie niveau werken en hoeven
zich niet meer bezig te houden met zaken als time synchronisation, iets dat berucht is
vanwege de moeilijk traceerbare race condities die hier vaak de kop opsteken.

In hoofdstuk 3 hebben we routeringsprotocollen bestudeerden geconstateerd dat de
veelgebruikte basis abstractie van een betrouwbare unicast link alleen tegen hoge kosten
(energieverbruik) aangeboden kan worden door de onderliggende MAC laag vanwege
de grote variatie in kanaal kwaliteit die WSN radio’s karakteriseren. Onze oplossing is
tweeledig. Ten eerste stappen we af van de notie vanN hops, en maken gebruik van de
ETX (Expected TX) metriek die rekening houdt met het verwachte aantal retransmis-
sions. Ten tweede, vervangen we de single-hop unicast communicatie door ExOR stijl
communicatie die wel gebruik maakt van de broadcast eigenschappen die het medium
radio biedt. Om deze broadcast primitief optimaal te benutten hebben we hem aangepast
zodat hij ook toepasbaar is op andere metrieken dan de originele hop-count, en andere
beslis-momenten toelaat. In het bijzonder hebben we twee nieuwe communicatie mecha-
nismen gëıntroduceerd: ExOR-ETX en ExOR-Bcast. De laatste implementeert flooding,
een operatie die in allerlei routeringsprotocollen gebruikt wordt naast het versturen van
applicatie data. Door ExOR-ETX en ExOR-Bcast te combinerenin een nieuw proto-
col, genaamd Guesswork, zijn we erin geslaagd een routeringsprotocol te ontwikkelen
dat zich moeiteloos aanpast aan fluctuerende kanaal kwaliteiten. Een van de sleutels tot
succes is dat Guesswork ExOR gebruikt om de beslissing naar welke buur node de bood-
schap te sturen uit te stellen tot het moment dat alle kandidaten de gelegenheid gehad
hebben een bevestiging (ACK) te sturen. Dit maakt het mogelijk om onder gunstige om-
standigheden direct met verre buren te communiceren in plaats van altijd conservatief te

158

kiezen voor een naaste buur die altijd met hoge waarschijnlijkheid te bereiken is. Deze
opportunistische strategie laat toe om het aantal hops te verminderen en energie te be-
sparen als de omstandigheden zich daartoe lenen.

In hoofdstuk 4 hebben we plaatsbepalingsalgoritme onder deloep genomen. Veel van
deze algoritmen zijn gebaseerd op het gebruik vanéénmalige afstandsschattingen tussen
paren van nodes. Echter de onbetrouwbaarheid van deze metingen en de verdeling daar-
van wordt niet meegenomen waardoor de behaalde nauwkeurigheid van de berekende
posities veel te wensen over laat. Wij hebben daarom geëxperimenterd met een nieuwe
abstractie tussen afstandssensor, in veel gevallen de radio, en plaatsbepalingsalgoritme:
in plaats vańeén getal gebruiken we een waarschijnlijkheidsverdeling. Door expliciet
met deze verdelingen te “rekenen”, in combinatie met het gebruik van een mobiel refer-
entie punt (anchor node) dat vele meetpunten beschikbaar maakt, zijn we erin geslaagd
een plaatsbepalingsalgoritme te ontwikkelen dat nauwkeuriger resultaten bereikt. Dit
RSL (Refined Statistics-based Localastion) algoritme is verder aangepast om ook in sce-
nario’s met weinig afstandmetingen te kunnen opereren middels het introduceren van
‘pseudo anchors’ en rekening houden met aanvullende eisen op basis van het maximale
radio bereik (bounding-box constraints). Het grootste voordeel is echter behaald met de
abstractie van afstandswaarschijnlijkheidsverdeling.

In hoofdstuk 5 hebben we het aanverwante probleem van beweginsdetectie beschouwd.
Men kan gebruik maken van speciale hardware in de vorm van versnellingsopnemers,
maar uit kosten oogpunt is het veel aantrekkelijker om deze informatie indirect af te lei-
den uit opeenvolgende plaatsbepalingen. Ook in dit geval blijkt het voordelen te hebben
om met afstandswaarschijnlijkheidsverdelingen te werken, en we hebben laten zien dat
deze effectief gebruikt kunnen worden in mass-spring systemen om kleine bewegingen
te detecteren. De bounding-box constraints komen van pas omgrotere bewegingen te
detecteren (een inconsistentie duidt op een aanzienlijke verplaatsing).

In hoofdstuk 6 tenslotte, hebben we data-aggregatie algoritmen bestudeerd. De over-
grote meerderheid richt zich op het efficiënt implementeren van standaard statistische
bewerkingen (gemiddelde, mediaan, histogram, enz.) in diverse WSN toepassingen.
Echter, de impliciete veronderstelling dat zulke statistische informatie relevant is voor
deze toepassingen is in onze optiek incorrect: juist de uitschieters in gemeten sensor
waarden zijn interessant (“Welke boom staat in brand?”), terwijl de statistische bewerkin-
gen deze met opzet negeren (“De gemiddelde temperatuur is 20,7 graad C.”). Deze obser-
vatie heeft ons gemotiveerd een nieuwe abstractie voor dataaggregatie te introduceren,
de phase-space representatie, die wel rekening houdt met derelevantie van uitschieters en
tevens de positionering van de diverse sensor waarden expliciet in ogenschouw neemt.
We hebben vervolgens een nieuw data aggregatie protocol (Foxtrot) gëımplementeerd
dat met behulp van een verzameling applicatie-specifieke regels in het netwerk beslist
welke phase-space’s geaggregeerd kunnen worden (“temperatuur met de nauwkeurigheid
van een halve graad”) en welke niet (“spatiële resolutie van minimaal 10m”). De re-
sultaten van Foxtrot zijn in vergelijking tot bestaande aggregatie protocollen bemoedi-
gend: de waardevolle uitschieters worden afzonderlijk gerapporteerd, terwijl vergelijk-
bare waardes in het netwerk geaggregeerd worden en er dus weinig extra data-verkeer
benodigd is.

159

Wij concluderen op basis van de vijf aspecten van sensor netwerken die we in de-
tail bestudeerd hebben, dat de hergebruikte abstracties inderdaad niet de juiste zijn en
voor problemen zorgen zowel wat betreft de efficiëntie van de protocollen die daarop
gebaseerd zijn, als de aangeboden functionaliteit die nietovereenkomt met de beoogde
toepassingen. Een herziening van deze abstracties is dus opzijn plaats en het onderzoek
beschreven in dit proefschrift laat zien dat hiermee voordelen behaald kunnen worden en
opent de weg naar verder onderzoek.

160

Curriculum Vitae

Tom Parker was born in London, England on January 8, 1981. He received his B.Sc.
(Hons) in Computer Science from the University of Bristol in2003. Later that year,
he in parallel started both his M.Sc. and Ph.D. in the Parallel and Distributed Systems
group at Delft University of Technology. In 2005, he completed his M.Sc., with his
thesis on Localisation in Mobile Anchor Networks. His research interests include routing
protocols, data aggregation models, sensor node software architectures, and finding ways
to change how we think.

He is currently employed as a researcher in the Parallel and Distributed Systems
group at Delft University of Technology.

Selected Publications

1. T. Parker and K. Langendoen. Refined statistic-based localisation for ad-hoc sen-
sor networks. InIEEE Workshop on Wireless Ad Hoc and Sensor Networks (asso-
ciated with Globecom 2004), Dallas, TX, Nov. 2004.

2. T. Parker and K. Langendoen. Guesswork: Robust routing inan uncertain world.
In 2nd IEEE Conf. on Mobile Ad-hoc and Sensor Systems (MASS 2005), Washing-
ton, DC, Nov. 2005.

3. T. Parker and K. Langendoen. Adumbrate: Motion detectionwith unreliable range
data. In4th Int. Workshop on Networked Sensing Systems (INSS 2007), pages 221–
228, Braunschweig, Germany, June 2007.

4. T. Parker and K. Langendoen. Foxtrot: phase space data representation for
correlation-aware aggregation. InFourth IEEE Conf. on Sensor, Mesh, and Ad
Hoc Communications and Networks (SECON), San Diego, CA, June 2007.

5. T. Parker, M. Bezemer, and K. Langendoen. TheλMAC framework: redefin-
ing MAC protocols. PDS Technical Report PDS-2007-004, Delft University of
Technology, Sept. 2007.

161

